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1 Introduction

The modeling of populations is of great importance in ecology and economy,
for instance, to describe predator-prey and competition interactions, to pre-
dict the dynamics of cell divisions and infectious diseases, and to manage
renewable resources (harvesting). Population models describe the change of
the number of species due to birth, death, and movement from position to
position (in space) or from stage to stage (age, size, etc.). In this short sur-
vey, we review some mathematical results for deterministic and continuous
population models. We concentrate on the following model classes:

• spatially homogeneous population models;
• spatially inhomogeneous population models;
• age- and size-structured population models; and
• time-delayed population models.

The evolution of spatially homogeneous populations may be modeled by
ordinary differential equations, for instance, by the logistic-growth model. The
interaction of competing populations can be described by a system of coupled
equations, one of which is the famous Lotka-Volterra system, introduced in
Section 2. Important questions, beside the wellposedness of the correspond-
ing problems, include the stability of steady states and the biological conse-
quences.

In a spatially heterogeneous setting, the population number varies in space
and may diffuse in the environment. This gives the class of reaction-diffusion
equations and their systems. Turing found that the stationary solution to a
diffusion system may become unstable even if the steady state of the cor-
responding system without diffusion is stable. Thus, the stability analysis is
much more involved than in the spatially homogeneous case. Roughly speak-
ing, in the long-time limit, one may have extinction or coexistence of the
species (see Section 3 for details).
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The solutions of the diffusive Lotka-Volterra competition model do not
show pattern formation. Hence, this model is not able to describe segregation
phenomena. In Section 4, we review several cross-diffusion models which allow
for inhomogeneous steady states. Roughly speaking, such stationary solutions
exist if cross-diffusion is large compared to diffusion. The existence analysis of
cross-diffusion systems is complicated due to the strong nonlinear coupling and
since the diffusion matrices may be neither symmetric nor positive definite.
Recently, some analytical tools have been developed to prove the existence of
global-in-time weak solutions. These tools are explained in detail since they
reveal interesting connections between the symmetrization of the diffusion
matrix and the existence of an entropy (Lyapunov functional). Section 4 is
the key section of this survey.

When the individuals of a population are not identical but can be distin-
guished by their age, size, etc., we need to introduce structured population
models. In Section 5, we introduce some age-structured and size-structured
balance equations of hyperbolic type. Following [121], results on the existence
and the long-time behavior of the solutions are presented.

The change of a population may be delayed due to maturation or regen-
eration time, for instance. In Section 6 we consider time-delayed population
models, following partially [56]. If the time delay is not discrete but distributed,
we arrive to nonlocal equations in which the term with the retarded variable
is replaced by a convolution in time.

The field of population modeling has become so large that this survey
can review only a small part of the published modeling and mathematical
topics. Many model classes and important issues will not be discussed. For
instance, we ignore difference and matrix equations, stochastic approaches,
and models including mutations, maturation structures, metapopulations, and
demographic or biomedical applications. For details about these topics, we
refer to the monographs [15, 38, 73, 100, 113, 114, 117, 121].

2 Initial-value population models

First, we consider the population dynamics of a single species without inter-
actions in a homogeneous environment. Let u(t) be the population number at
time t ≥ 0. Its rate of change is given by the difference of the birth and death
rates. Assuming that these rates are proportional to the population number,
we obtain the differential equation du/dt = au, first suggested by Malthus
[101] in the 18th century, where a, which is typically a positive number, is
the effective growth rate of the population. Its solution models unlimited ex-
ponential growth. The capacity of the environment (limited food supply or
other environmental resources) can be taken into account by introducing a
self-limiting term:

du

dt
= u(a − bu), t > 0, u(0) = u0, (1)
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where b > 0 is a measure of the environment capacity. This equation, proposed
by Verhulst [143] in the 19th century, is called the logistic-growth model. Its
solution u(t) converges to the so-called carrying capacity limit a/b as t → ∞
(if u(0) > 0), which is a stable steady state.

Next, let us consider the population of two species u(t) and v(t). When they
are not interacting, its evolution is described in the logistic-growth approach
by the equations

du

dt
= u(a1 − b1u),

dv

dt
= v(a2 − c2v), t > 0.

The coefficients b1 ≥ 0 and c2 ≥ 0 are called the intra-specific competition
constants. In this situation, the populations are evolving independently from
each other. When the species are interacting, we add competition terms pro-
portional to the population numbers:

du

dt
= u(a1 − b1u − c1v),

dv

dt
= v(a2 − b2u − c2v), t > 0, (2)

where the new coefficients c1 and b2 model inter-specific competition or ben-
efit, depending on their sign. We distinguish three types of interactions:

• Predator-prey model: c1 > 0, b2 < 0. This choice decreases the (effective)
growth rate of the species u and increases the growth rate for v. Since the
growth rate for v becomes larger when the population number u is large,
v represents a predator species and u the prey. Clearly, taking c1 < 0 and
b2 > 0 changes the roles of prey and predator.

• Competition model: c1 > 0, b2 > 0. The interaction terms are nonpositive,
thus decreasing the growth rates of the species. This means that both
species are competing for the (food or environmental) resources.

• Mutualistic (or symbiotic) model: c1 < 0, b2 < 0. When the two species
benefit from the interactions, the growth rates are enhanced. In this sit-
uation, the interaction terms are taken nonnegative and the constants c1

and b2 are negative.

A particular predator-prey model is obtained when the intra-specific com-
petition vanishes, b1 = c2 = 0:

du

dt
= u(a1 − c1v),

dv

dt
= −v(α − βu), t > 0,

where we have set α := −a2 > 0 and β := −b2 > 0. The sign assumption
on a2 means that the predators will become extinct in the absence of the
prey, since in this situation, dv/dt = −αv. This system is usually called the
Lotka-Volterra model, proposed by Volterra [144] and independently by Lotka
to describe a chemical reaction [94] in the first half of the 20th century. It has
the remarkable property of possessing a first integral,

βu + c1v − log(uαva1) = const.,
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showing that the system admits positive oscillating solutions if u(0) > 0,
v(0) > 0 [114, Chap. 3.1]. The predator-prey model with limited growth (i.e.
(2) with a2 < 0 and b2 > 0) allows for two scenarios. Depending on the choice
of the parameters and the initial data, the predator population becomes ex-
tinct and the prey population approaches its carrying capacity limit, or there
is coexistence of both species, i.e., (u(t), v(t)) converges to the asymptotically
stable steady state

s∗ =
(a1c2 − a2c1

b1c2 − b2c1
,
b1a2 − b2a1

b1c2 − b2c1

)

(3)

as t → ∞. Notice that our sign assumption on b2 implies that b1c2 − b2c1 > 0.
Similar results are valid for the competition model [145, Chap. 2].

In the mutualistic model, one distinguishes between the weak mutualis-
tic case b1c2 > b2c1, in which the self-limitation, expressed by b1 and c2,
dominates the mutualistic interaction, expressed by b2 and c1, and the strong
mutualistic case, in which mutualism dominates self-limitation. In the former
case, there is generally stable coexistence, whereas in the latter case, there
are three scenarios: either at least one of the species become extinct, or the
solution (u(t), v(t)) converges to the steady state (3) as t → ∞, or (u(t), v(t))
blows up in finite time [96].

The dynamics of Lotka-Volterra systems with more than two species is
more involved. For instance, chaos has been observed in models with four
competing species (see [142] and the references therein).

3 Reaction-diffusion population models

In the previous section, we have considered populations which are spatially
homogeneous. However, in a spatially heterogeneous environment, the popu-
lation density will depend on space. Assuming that populations tend to move
to regions with smaller number density, it is reasonable to include diffusive
terms in the evolution equations, which may be justified as limiting expres-
sions of a Brownian motion [117]. Then a single-species population density
u(x, t) evolves in the bounded domain Ω ⊂ R

n according to

ut − d∆u = uf(x, u), x ∈ Ω, t > 0, u(·, 0) = u0, (4)

supplemented with some boundary conditions, where ut abbreviates the time
derivative ∂u/∂t. Often, homogeneous Neumann boundary conditions ∇u ·
ν = 0 on ∂Ω are taken, where ν is the exterior unit normal on ∂Ω. These
conditions signify that the number of individuals is fixed in the domain (no
migration occurs). Also homogeneous Dirichlet boundary conditions u = 0 on
∂Ω can be used, expressing a very hostile environment at the boundary. The
coefficient d > 0 is the diffusion constant, and f(x, u) is the growth rate per
capita, depending on the population and the heterogeneous environment. A
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typical example is the logistic-growth function f(x, u) = a(x)−b(x)u; then (4)
is called the Fisher-Kolmogorov-Petrovsky-Piskunov equation, introduced by
Fisher [44] and studied by Kolmogorov et al. [78]. Reaction-diffusion models
of type (4) have been also considered in physics, chemistry, ecology etc.; see
the monographs of Okubo and Levin [117] and Murray [113].

The function f(x, u) = a(x)− b(x)u is decreasing in u (if b(x) > 0). Some
population ecologists argue that the growth rate f may not be decreasing in u
for all u ≥ 0, but it may achieve a maximum at an intermediate density. This
so-called Allee effect [3] may be caused by, for instance, shortage of mates at
low density, lack of effective pollination, or predator saturation [131]. Whereas
in the logistic growth case (with a(x) > 0) there exists a unique nonnegative
steady state (positive for slow diffusion and zero for fast diffusion; see [19]),
there may be two steady states when an Allee effect is present [131]. Matano
[102] and Casten and Holland [20] showed that any stable steady state to (4)
(with homogeneous Neumann boundary conditions) is constant if the domain
Ω is convex.

The situation becomes much more complex when we consider systems of
equations,

ut − ∆(Du) = g(x, u), x ∈ Ω, t > 0, u(·, 0) = u0, (5)

where u ∈ R
m is a vector-valued function, D = diag(d1, . . . , dm) is a diagonal

matrix with constant coefficients di, and g = (gi) : Ω × R
m → R

m (m > 1).
Turing found in his seminal work [141] that different diffusion rates di in a
parabolic system, modeling the interaction of two chemical substances, may
lead to inhomogeneous distributions of the reactants, which allows one to
model a pattern structure. Moreover, even if the steady state of the differ-
ential equation without diffusion is stable, the corresponding steady state of
the diffusion system may become unstable and bifurcations may occur. This
phenomenon is generally called diffusion-driven instability.

Similar to the scalar case, Kishimoto and Weinberger [76] proved that,
in a convex domain, the system (5) with homogeneous Neumann boundary
conditions has no stable nonconstant steady state if ∂gi/∂uj > 0 for all
i 6= j (cooperation-diffusion system); the same conclusion holds for m = 2
if ∂gi/∂uj < 0 for i 6= j (competition-diffusion system). On the other hand,
in nonconvex domains, stable nonconstant steady states may exist, see the
works [66, 67, 103] for certain dumbbell-shaped domains. For more references,
we refer to [40].

One may ask if a diffusion-driven instability also occurs in Lotka-Volterra
diffusion systems. For this, following Lou and Ni [97], we discuss the compe-
tition model

ut − d1∆u = u(a1 − b1u − c1v), vt − d2∆v = v(a2 − b2u − c2v), (6)

for x ∈ Ω and t > 0, with initial and homogeneous Neumann boundary
conditions. The coefficients ai, bi, ci, di (i = 1, 2) are positive. This model
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may be supplemented by adding a given common environmental potential φ,
modeling territories in which the environmental conditions are more or less
favorable. In this situation, the equation for u has to be replaced by

ut − div(d1∇u − e1u∇φ) = u(a1 − b1u − c1v),

and similar for the equation for v.
It is known that the initial-boundary value problem from (6) has a unique

nonnegative smooth solution, see, e.g., [149] for systems with m equations
and general semilinearities. The long-time behavior depends on the values
of the reaction coefficients, and there are, in contrast to the Lotka-Volterra
differential equations (2), three situations. Set A = a1/a2, B = b1/b2, C =
c1/c2. Then [97]

• Extinction: A > max{B,C} or A < min{B,C}. The solution (u(t), v(t))
converges to (a1/b1, 0) or (0, a2/c2), respectively, uniformly as t → ∞.
Thus, one species dominates and the other species becomes extinct.

• Weak competition: B > A > C. The solution (u(t), v(t)) converges to the
steady state s∗, defined in (3), uniformly as t → ∞. This means that both
species coexist.

• Strong competition: B < A < C. The steady states (a1/b1, 0) and (0, a2/c2)
are locally stable, but s∗ is unstable. If the domain is convex, no stable
positive steady state exists.

In particular, in the weak competition case, the steady state s∗ is globally
asymptotically stable regardless of the values of the diffusion coefficients d1

and d2. In fact, there exists a Lyapunov functional which allows for a long-time
asymptotic analysis [89, 126]. Therefore, no nonconstant steady state exists
for any d1 and d2, and there is no pattern structure. For the Volterra model
with diffusion, for any number of interacting populations, Murray [112] has
shown that the effect of uniform diffusion is to damp all spatial variations.
General reaction rates and the stability of constant steady states have been
considered by Conway and Smoller [27]. The situation changes when cross-
diffusion terms are present in (6), modeling the population pressures created
by the competitors; see Section 4 for details.

The asymptotic behavior of solutions to reaction-diffusion systems similar
to (6) has been studied in several papers. For instance, the existence of travel-
ing wave solutions in one-dimensional diffusive Lotka-Volterra predator-prey
models with a logistic growth condition was shown by Dunbar [37]. More re-
cently, traveling waves for a reaction-diffusion system with one diffusion term
omitted were analyzed by Ai and Huang [1].

The following diffusive mutualistic model was considered by Lou, Nagilaki,
and Ni [96]:

ut − d1∆u = u(a1 − b1u + c1v), vt − d2∆v = v(a2 + b2u − c2v)

in Ω×(0,∞) with initial and homogeneous Neumann boundary conditions and
ai, bi, ci > 0. Compared to (6), the signs of the interaction terms are reversed,
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expressing mutualistic interactions. Lou, Nagilaki, and Ni prove the interesting
result that, in the strong mutualistic case (see Section 2), the population of
the species may blow up in finite time, although one or both species with
exactly the same initial data would die out if no diffusion effects are taken
into account. The mathematical reason is that diffusion first averages u and
v, possibly increasing the densities, and, after some time, the reaction terms
dominate and may force the solution to blow up. As the diffusion initiates the
blowup process at the first stage, this phenomenon is called diffusion-induced
blowup.

A related effect is diffusion-induced extinction. Iida et al. [65] have stud-
ied the diffusive Lotka-Volterra model in the strong competition case. In the
absence of diffusion, if one species is initially superior to the other one, the
superior species wipes out the other species. On the other hand, allowing for
diffusion (with the same diffusion rates), Iida et al. proved that the superior
species may become extinct. If the diffusion rates are different, the situation
is more complicated, and we refer to [116] for details.

Finally, we remark that systems with more than two equations have
been considered too. For instance, the coexistence of competing species in
a reaction-diffusion system with one predator and two competing prey is
analyzed in [70], and the existence and stability of stationary and periodic
solutions to a reaction-diffusion system consisting of m species is proved in
[39].

4 Cross-diffusion population models

The diffusive Lotka-Volterra competition model has no nonconstant steady
state for all possible diffusion rates, thus excluding biologically reasonable
pattern structures. Inhomogeneous steady states may be obtained by taking
into account cross-diffusion terms instead of just adding pure diffusion to
the population models. In this section, cross-diffusion models are analyzed in
detail.

First, let us consider cross-diffusion systems with constant diffusion rates,

ut − (d1∆u + d2∆v) = uf(x, u, v), vt − (d3∆u + d4∆v) = vg(x, u, v)

in Ω × (0,∞) with initial and homogeneous Neumann boundary conditions.
Clearly, a necessary condition to have – at least local – existence of solutions
is that the diffusion matrix

(

d1 d2

d3 d4

)

is positive definite (see, e.g., [7]). The above system shows indeed diffusion-
driven instabilities. Farkas [41] has proved that the one-dimensional stationary
model undergoes a Turing bifurcation at a certain size of the interval under
suitable conditions on the coefficients of the system. This means that a larger
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domain may lead to a heterogeneous distribution of the steady states even
if the conditions are homogeneous everywhere. We also refer to [62, 80] for
results in this direction. The stability and cross-diffusion-driven instability of
constant stationary solutions was studied by Flavin and Rionero [45]. Also
wavelike solutions are possible in such cross-diffusion systems. For instance,
Kopell and Howard [79] have proved the existence of plane-wave solutions of
the type (u, v)(x, t) = (U, V )(k · x−ωt), and they have analyzed the stability
and instability of the waves. Summarizing, we may say that diffusion tends
to suppress pattern formation, whereas cross-diffusion seems to help creating
pattern under suitable conditions.

Generally, we expect that the cross-diffusion rate of one species is not
constant but depends on the population density of the other species and vice
versa. Therefore, we replace the linear term by a nonlinear one involving the
product of both populations. This leads to the following system, first suggested
by Shigesada, Kawasaki, and Teramoto [132]:

ut − ∆
(

(d1 + α11u + α12v)u
)

= u(a1 − b1u − c1v), (7)

vt − ∆
(

(d2 + α21u + α22v)v
)

= v(a2 − b2u − c2v), (8)

∇u · ν = ∇v · ν = 0 on ∂Ω, t > 0, u(·, t) = u0, v(·, t) = v0 in Ω, (9)

where Ω ⊂ R
n is a bounded domain. The diffusion coefficients di and αij

as well as the reaction coefficients ai, bi, and ci are assumed to be constant
(and nonnegative). The expressions α12∆(uv) and α21∆(uv) are the nonlinear
cross-diffusion terms, and α11∆(u2) and α22∆(v2) describe the self-diffusion of
the species. The basic idea is that the primary cause of dispersal is migration
to avoid crowding instead of just random motion (modeled by diffusion). In
the following, we review some mathematical properties of the above cross-
diffusion system.

Stability. Mathematicians started to pay attention to the model (7)-(8) from
the 1980s on, first examining mainly stability issues. One of the first pa-
pers is due to Mimura and Kawasaki [109], who have shown, neglecting self-
diffusion and assuming reaction coefficients such that b1 = b2, c1 = c2, and
c1/b1 > a1/a2 > b1/c1, that the stationary one-dimensional system has spa-
tial patterns exhibiting segregation. Matano and Mimura [103] showed that,
if the diffusion coefficients d1 and d2 are sufficiently large, bounded station-
ary solutions must be constant. A segregation result in a triangular diffusion
system (i.e. α21 = 0) is shown by Mimura [108].

An important paper on the interplay between diffusion and cross-diffusion
was published by Lou and Ni [97], and in the following, we will describe their
results (also see the review [115]). We consider the weak competition case
B > A > C (see Section 3), since in this case, the system (7)-(9) without
cross-diffusion has no nonconstant steady states. It holds:

• Let B > A > (B + C)/2 and d2 belonging to a proper range. Then, if
α21 ≥ 0 is fixed and α12 is sufficiently large, there exists a nonconstant
steady state.



Diffusive and nondiffusive population models 9

• Let B > A > C. If one of the diffusion constants d1 or d2 is sufficiently large
(compared to the cross-diffusion coefficients α12 and α21), the constant
vector s∗, defined in (3), is the only positive steady state.

This means that there are nonconstant steady states if cross-diffusion is suf-
ficiently large, and large diffusion coefficients tend to eliminate any pattern.
In the strong competition case B < A < C, the situation is more complicate
but cross-diffusion has similar effects in helping to create pattern formation;
see [97] for details.

The existence of positive steady states for coefficients (a1, a2) lying in a
certain region was shown by Ruan [127], generalizing results by Mimura [108]
and Li and Logan [90]. See also [25] for the same issue. Hopf bifurcations of
coexistence steady states have been analyzed by Kuto [83]. The existence and
nonexistence of coexistence steady states of the mutualistic model was ana-
lyzed by Pao [118], later generalized by Delgado et al. [32]. In recent years,
several works were considered with three-species cross-diffusion systems pro-
viding sufficient conditions for the existence of nonconstant positive steady
states, see [24, 52, 95, 128, 129].

Partial existence theory. First, we report the mathematical difficulties in
the analysis of the time-dependent system (7)-(9). Its diffusion matrix

A =

(

d1 + 2α11u + α12v α12u
α21v d2 + 2α22v + α21u

)

(10)

is neither symmetric nor in general positive definite such that even the local
existence of solutions is far from being trival. Moreover, there exists generally
no maximum principle for parabolic systems, which would allow one to derive
bounds on the solutions. Finally, it is not clear how to prove the nonnegativity
or positivity of the population densities, which is desirable from a biological
point of view. It is therefore not surprising that the first existence results
in the literature were concerned with special cases, and partial results were
obtained only: local-in-time existence, and global-in-time existence for small
cross-diffusion constants or for triangular diffusion matrices (α21 = 0).

One of the first results on the existence of transient solutions was achieved
by Kim [74]. He proved the local existence of nonnegative solutions to the
one-dimensional cross-diffusion system without self-diffusion. If all diffusion
coefficients are set equal to one, he obtained the global existence of solutions.
The reason for the last result is easy to see: Taking the difference of the
equations

ut − ∆(u + uv) = u(a1 − b1u − c1v),

vt − ∆(v + uv) = v(a2 − b2u − c2v),

the difference w := u − v solves

wt − ∆w = u(a1 − b1u − c1v) − v(a2 − b2u − c2v).
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Thus, for given u and v, the function w is a solution to the linear heat equa-
tion and can be easily controlled by the right-hand side. Kim derived H2(Ω)
estimates for u, v, and w, which enabled him to extend the local solution for
any time. Another result is due to Deuring [34]. For sufficiently small cross-
diffusion parameters α12 and α21 (or equivalently, sufficiently small initial
data) and vanishing self-diffusion coefficients α11 = α22 = 0, he proved the
global existence of solutions to (7)-(9).

Several papers are concerned with the global existence of solutions in the
special case α21 = 0. Then the diffusion matrix is triangular and the equa-
tion (8) for the second species is only weakly coupled through the reaction
terms, considerably facilitating the analysis. We mention some works in this
direction: Pozio and Tesei [123] have assumed rather restrictive conditions on
the reaction terms for their global existence results. The conditions have been
weakened later by Yamada [153]. Redlinger [125] has neglected self-diffusion
but he has chosen general reaction terms of the form uf(u, v) and vg(u, v);
Yang [154, 155] generalized his results. Lou, Ni, and Wu [98] examined the
case of one and two space dimensions and included self-diffusion in the equa-
tion for v. The system in any space dimension was treated by Choi, Lui, and
Yamada [26] under the hypotheses that the cross-diffusion in the equation for
u is sufficiently small and that there is no self-diffusion in the equation for
v. This work was generalized by Van Tuoc [140], assuming that the cross-
diffusion parameter of one species is smaller than the self-diffusion coefficient
of the other species.

Considerable progress was made by Amann [6]. He derived sufficient condi-
tions for the solutions to general quasilinear parabolic systems to exist globally
in time. The question if a given (local) solution exists globally is reduced to
the problem of finding a priori estimates in the space W k,p(Ω). More precisely,
if the local solution is bounded in W 1,p(Ω) uniformly in (0, T ), where T > 0
is the maximal time of existence and p > n (n being the space dimension), or
if one can control the L∞ and Hölder norms, then the solution exists globally.
These results have been applied to triangular cross-diffusion systems, see the
works by Amann [6] and later by Le [84].

Full diffusion matrices were considered in [92, 147, 151]. Li and Zhao [92]
proved the global existence of solutions under some restrictions on the (cross)
diffusion coefficients, whereas Wen and Fu [147] achieved related results for
systems with m species. Yagi [151] studied the two-dimensional problem with-
out self-diffusion and showed a global existence result under the conditions

0 < α12 < 8α11, 0 < α21 < 8α22, α12 = α21.

This hypothesis is easily understood by observing that in this case, the diffu-
sion matrix A in (10) is positive definite,

z⊤Az ≥ min{d1, d2}|z|2 for all z ∈ R
2.

If the above condition does not hold, there are choices of the parameters such
that A is not positive definite.
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Finally, we mention the work [47] by Fu, Gao, and Cui, who have proved
the global existence of classical solutions to a three-species cross-diffusion
model with two competitors and one mutualist.

Global existence theory. Remarkably, the positive definiteness of A is not
necessary to obtain global existence of solutions to (7)-(9). The first global
existence result for the one-dimensional cross-diffusion system without any
restriction on the diffusion coefficients (except positivity) was achieved by
Galiano et al. [49]. Their result is based on two observations which are de-
scribed in the following.

First, there exists a transformation of variables which symmetrizes the
problem. This transformation reads as

u = ew1/α21, v = ew2/α12.

Then system (7)-(8) transforms into

∂

∂t

(

ew1

ew2

)

− div(B(w)∇w) = f(w),

where

w =

(

w1

w2

)

, f(w) =

(

ew1(a1 − b1e
w1/α21 − c1e

w2/α12)
ew2(a2 − b2e

w1/α21 − c2e
w2/α12)

)

.

The new diffusion matrix

B(w) =

(

(d1 + 2α11α
−1
21 ew1 + ew2)ew1 ew1+w2

ew1+w2 (d2 + 2α22α
−1
12 ew2 + ew1)ew2

)

,

is symmetric and positive definite,

det B(w) ≥ d1e
w1 + d2e

w2 ,

i.e., the operator div(B(w)∇w) is elliptic for all positive di and nonnegative
αij (but not uniformly in w). Another advantage of the above transformation
is that if L∞ bounds for wi are available, the functions ui are automati-
cally positive. This idea circumvents the maximum principle which cannot
be applied to the present problem. We remark that exponential changes of
unknowns have been used in other models to prove the existence of nonnega-
tive or positive solutions to elliptic or parabolic systems and to higher-order
equations, see [50, 61, 68, 69].

The second idea is that the cross-diffusion system admits a priori estimates
via the functional

E1(t) =

∫

Ω

( u

α12
(log u − 1) +

v

α21
(log v − 1)

)

dx. (11)

Due to the similarity to the physical entropy, we call this functional an entropy.
It satisfies the so-called entropy inequality
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dE1

dt
+ 2

∫

Ω

(2d1

α12
|∇

√
u|2 +

α11

α12
|∇u|2 +

2d2

α21
|∇

√
v|2 +

α22

α21
|∇v|2

+ 2|∇
√

uv|2
)

dx ≤ C1, (12)

where C1 > 0 is a constant depending only on the reaction parameters. This
provides, for positive self-diffusion parameters, H1(Ω) estimates for u and v.

It is not a coincidence that the symmetrizable system (7)-(8) possesses an
entropy functional; see below for a discussion of the relation between symme-
try and entropy.

Clearly, the above computation can be made rigorous only if u and v are
nonnegative (or even positive) functions. For this, we need to show L∞ bounds
for wi, which cannot be deduced from the above entropy estimate. The idea
of [49] was to employ another “entropy” functional,

E(t) = E1(t) + γE2(t), E2(t) =

∫

Ω

( 1

α12
(u − log u) +

1

α21
(v − log v)

)

dx,

where γ = 4min{d1/α12, d2/α21}. Indeed, employing Young’s inequality, we
arrive to

dE2

dt
≤ −

∫

Ω

( d1

α12
|∇ log u|2 +

d2

α21
|∇ log v|2 + 8

α11

α12
|∇

√
u|2

+ 8
α22

α21
|∇

√
v|2

)

dx +

∫

Ω

(

|∇
√

u|2 + |∇
√

v|2
)

dx

+

∫

Ω

(−a1 − a2 + (b1 + b2)u + (c1 + c2)v)dx.

The second integral can be estimated by the corresponding terms in E1, and
the last integral is controlled by the reactions terms coming from dE1/dt.
After some manipulations we arrive to

dE

dt
+

∫

Ω

(γd1

α12
|∇ log u|2 +

γd2

α21
|∇ log v|2

)

dx ≤ C2,

where C2 > 0 depends again only on the reaction constants. This estimate
gives a bound for log u and log v in L2(0, T ;H1(Ω)). Up to now, the arguments
are valid in any space dimension n. Now, we need the assumption n = 1.
Indeed, in this case, the space H1(Ω) embeddes continously into L∞(Ω), thus
showing that u = ew1 and v = ew2 are positive.

Unfortunately, there are no L∞ bounds for wi in time. Therefore, Galiano
et al. [49] have discretized the cross-diffusion system in time (by the backward
Euler scheme), obtaining a sequence of elliptic equations, which are solved
recursively in time. Since time is discrete, the semidiscrete population densities
are strictly positive. The above a priori estimates are sufficient to pass to the
limit τ → 0 of the time discretization parameter τ , using Aubin compactness

results for the sequence of semi-discrete solutions exp(w
(τ)
1 ) and exp(w

(τ)
2 ).
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Since the compactness holds for exp(w
(τ)
i ) and not for w

(τ)
i , we loose the

boundedness of log u and log v and thus the strict positivity of u and v in
the limit τ → 0, but still obtaining the nonnegativity of u and v as limits of
sequences of positive functions.

The assumption of one space dimension to define the exponentials ewi

is crucial in the above argument. In order to deal with multi-dimensional
problems, Chen et al. [21] have used another idea. They have discretized the
cross-diffusion term ∆(uv) = div(uv log(uv)) by the finite differences

D−h
(

χhuvDh(log(uv))
)

,

with D−h being an approximation of the divergence, Dh an approximation of
the gradient, and χh the characteristic function of {x ∈ Ω : dist(x, ∂Ω) > h}.
This discretization is inspired from [77], in which a cross-diffusion problem
from semiconductor theory was studied. The approximate problem possesses
an entropy inequality similar to (12) but with the term |∇√

uv|2 replaced by
χhuv|Dh log(uv)|2. In order to avoid problems arising from the logarithm, u
and v are replaced by u+ + η and v+ + η, respectively, where u+ = max{0, u}
is the positive part of u and η > 0 is a parameter. The nonnegativity of
the aproximate solutions is proved by taking the negative part (u−, v−) =
(min{0, u},min{0, v}) as a test function in the weak formulation of the system,
yielding an estimate of the type

‖u−(·, t)‖L2(Ω) + ‖v−(·, t)‖L2(Ω) ≤
C

| log η| uniformly in t > 0.

In the limit η → 0 this gives u− = v− = 0 in Ω × (0,∞) and hence the non-
negativity of the population densities. Further approximations are necessary:
The system is discretized in time by the backward Euler scheme, and the
diffusion coefficients in B(w) are approximated by bounded functions. Then
the discrete entropy estimates allow for the limit of vanishing approximation
parameters.

In [21], the self-diffusion coefficients need to be positive in order to deduce
H1(Ω) bounds for u and v. This condition has been weakened later in [22]
by allowing for vanishing self-diffusion, α11 = α22 = 0. Then there are no
H1(Ω) bounds for u (and v) which are needed for the Aubin compactness
argument. This problem is solved by exploiting the bounds on

√
u. Indeed,

by the Gagliardo-Nirenberg inequality, u is bounded in L4/3(0, T ;W 1,4/3(Ω)).
Together with an L1(0, T ; (Hs(Ω))∗) bound for ut, where (Hs(Ω))∗ denotes
the dual space of Hs(Ω), one can apply the Aubin lemma [137]. However,
there remains a problem: The L1(0, T ; (Hs(Ω))∗) bound for ut does not imply
weak compactness in the context of Lp spaces since L1 is not reflexive. This
problem is overcome by using a weak compactness result in L1 due to Yoshida
(see Lemma 6 in [22]).

We mention that the approximation procedure in [22], compared to [21],
has been simplified. Indeed, instead of discretizing the cross-diffusion terms,
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a Galerkin approximation, together with a semi-discretization in time, is per-
formed. In order to deal with a possible degeneracy of the diffusion matrix, the
elliptic regularizations ε∆w1 and ε∆w2 are added. Thus, there are three in-
stead of four approximation levels needed in [21]: the dimension of the Galerkin
space, the time-discrete parameter, and the regularization parameter ε > 0.

Another (simpler) regularization was suggested by Barrett and Blowey
[10]. They have derived entropy-type estimates by using an approximate en-
tropy functional Eε, which is quadratic for very small and very large popula-
tion densities, together with a truncation of the diffusion coefficients to ensure
uniform ellipticity. This approximation gives

‖u−(·, t)‖L2(Ω) + ‖v−(·, t)‖L2(Ω) ≤ C
√

ε,

and hence u, v ≥ 0 in the limit ε → 0.
The above procedures fail in the whole-space case Ω = R

n. Indeed, it is
natural to assume that the solutions (u, v) decay to zero as |x| → ∞ which
implies that log u(x, t) = ∞ and log v(x, t) = ∞ at infinity. But then the
partial integrations needed to derive the entropy estimates have to be justified.
This difficulty was overcome by Dreher [36] by introducing a modified entropy
which compares the solution (u, v) against an exponentially decaying weight
function. Dreher also used a semi-discretization in time but a higher-order
elliptic regularization with the operator ∆4.

Relation between symmetry and entropy. Above, we have shown that
the cross-diffusion system (7)-(8) can be “symmetrized”, by a change of vari-
ables, and that it possesses an entropy functional. This is not a coincidence.
In fact, it is well known from the theory of hyperbolic conservation laws that
the existence of a symmetric formulation is equivalent to the existence of an
entropy functional [72]. This equivalence was reconsidered for parabolic sys-
tems by Degond et al. [30] and exploited for the mathematical analysis of
energy-transport systems in nonequilibrium thermodynamics [29].

Consider the system

ut − div(A(u)∇u) = f(x, u) in Ω, t > 0, u(·, 0) = u0 ≥ 0 in Ω, (13)

supplemented with homogeneous Neumann boundary conditions. The same
results hold for Dirichlet and mixed Dirichlet-Neumann boundary conditions
[29]. The vector div(A(u)∇u) is defined by its components

∑

j div(Aij(u)∇uj).

The diffusion matrix A(u) ∈ R
m×m may be neither symmetric nor positive

definite. Systems (13) have been studied by Alt and Luckhaus [5] but only
for positive definite matrices A(u) and for solutions u which may change sign.
The case of indefinite diffusion matrices can be mathematically treated if there
exists a change of unknowns u = b(w) with b : R

m → R
m such that

B(w) := A(b(w))b′(w) is symmetric and positive definite.

To ensure that (13) is of parabolic type, we assume further that the function
b is monotone and a gradient, i.e., (b(w1) − b(w2)) · (w1 − w2) ≥ 0 for all w1,
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w2 ∈ R
m and there exists a function χ : R

m → R such that χ′ = b. Then (13)
can be reformulated as

(b(w))t − div(B(w)∇w) = f(x, b(w)).

We claim that this system admits some a priori estimates if the reaction term
f can be controlled. Define the entropy

E(t) =

∫

Ω

(b(w) · w − χ(w))dx.

Then, after a formal computation,

dE

dt
+

∫

Ω

(∇w)⊤B(w)(∇w)dx =

∫

Ω

f(x, b(w)) · wdx.

Since B(w) is positive definite, by assumption, the integral on the left-hand
side is nonnegative. If the right-hand side can be controlled, this equation
provides an a priori estimate for w. When −f is monotone in the sense of
f(x, b(w)) · w ≤ 0, E is even a Lyapunov functional.

In the population cross-diffusion system (7)-(8), we have b(w) = (ew1 , ew2)
which is a gradient since χ(w) = ew1 +ew2 satisfies χ′ = b. (Here, we assumed
that α12 = α21 = 1, which can be achieved by a rescaling [49].) The entropy
becomes

E =

∫

Ω

(

ew1(w1 − 1) + ew2(w2 − 1)
)

dx

=

∫

Ω

(

u1(log u1 − 1) + u2(log u2 − 1)
)

dx,

which is of the form (11). The advantage of the special transformation u =
b(w) = (ew1 , ew2) is that it gives automatically nonnegative or even positive
solutions u. These ideas have been employed in the analysis of systems from
various applications, such as thermodynamics [29, 31], semiconductor theory
[23], and granular materials [50].

Regularity theory and long-time behavior of solutions. Since Hölder
continuity of bounded weak solutions plays an important role in showing
the global existence of solutions in the framework of Amann, several authors
proved the Hölder regularity of solutions under suitable assumptions. For the
triangular system, Le [84] proved that if the L∞ norm of v and the Ln norm
of u (n being the space dimension) can be controlled in the sense of [84], then
their Hölder norms are also controlled. Furthermore, if the control is possible
for every solution, there exists a global attractor with finite Hausdorff dimen-
sion. The Hölder continuity results have been generalized by Le in [85, 86] to
include more general diffusion coefficients.

Shim derived uniform L∞ bounds for the solutions under additional condi-
tions on the diffusion constants in the one-dimensional setting, and he showed
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the convergence to the steady states as t → ∞ [133, 134, 135, 136]. The
existence of an exponential attractor (i.e., a compact, finite-dimensional, pos-
itively invariant set which attracts any bounded set at an exponential rate)
was shown by Yagi [152]. Kuiper and Dung [82] proved the existence of a
global attractor for cross-diffusion systems with general diffusion functions.
For further results in this direction, we refer to the works [87, 88] of Le and
coworkers.

The long-time behavior of solutions is connected with the existence of
constant or nonconstant steady states, as reviewed above. Lou and Ni [97]
discussed the question if nonconstant steady states in the weak competition
case still exist if both cross-diffusion constants are strong but qualitatively
similar. (The answer is yes if only one of the cross-diffusion parameters is
sufficiently large.) A partial answer is given by Chen et al. [22] by studying
the long-time behavior of the solutions. More precisely, they showed that for
vanishing intra-specific competitions b2 = c1 = 0, which is a special case of
weak competition, only constant steady states exist no matter how strong the
cross-diffusion coefficients are.

The argument is as follows. Define the relative entropy

ER(t) =

∫

Ω

( u

α12
φ
( u

u∗

)

+
v

α21
φ
( v

v∗

))

dx,

where φ(s) = s(log s − 1) + 1 for s ≥ 0 and (u∗, v∗) = (a1/b1, a2/c2) are
homogeneous steady states. Then a computation shows that for all t ≥ s > 0,
since b2 = c1 = 0,

dER

dt
+ C

∫

Ω

(

|∇
√

u|2 + |∇
√

u|2
)

dx

≤ −
∫

Ω

(

b1u(u − u∗)(log u − log u∗) + c2v(v − v∗)(log v − log v∗)
)

dx ≤ 0,

where C > 0 depends on the diffusion coefficients. Now, if (u, v) is a stationary
solution to the cross-diffusion system, clearly dER/dt = 0 and

‖∇
√

u‖2
L2(Ω) + ‖∇

√
u‖2

L2(Ω) ≤ 0.

Thus, u and v are constant in Ω. Since they satisfy the stationary equations,
we conclude that u(a1 − b1u) = v(a2 − c2v) = 0 in Ω. Hence, either u = 0 or
u = a1/b1 and either v = 0 or v = a2/c2. In both cases, (u, v) is a constant
stationary solution.

Numerical approximation. There are only few papers concerned with
the numerical discretization of the cross-diffusion system (7)-(8). The one-
dimensional stationary problem was numerically solved in [48] using semi-
implicit finite differences. The numerical experiments confirm that segrega-
tion of the species occurs for sufficiently large cross-diffusion parameters. As
mentioned above, a semi-discretization in time was proposed in [49], and the
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convergence of the semi-discrete solutions to a continuous one was proved.
Barrett and Blowey [10] presented a convergence proof for a fully discrete
finite-element approximation. Very recently, Gambino et al. [51] have dis-
cretized the one-dimensional problem by a particle approximation in space
and an operator-splitting method in time together with an Alternating Direc-
tion Implicit (ADI) scheme.

5 Structured population models

The population models in the previous sections are based on the assumption
that all individuals of a certain species are identical. However, populations
typically consist of individuals which can be distinguished by various variables
such as age, size, gender, etc. In this section we review some models which
include an age or size structure, following [119, 121]. Other structured models
can be found in [28, 100, 106].

Age-structured models. A model in which the vital rates depend on the
age variable was first given by Sharpe and Lotka [130], known as the Lotka-
McKendrick or McKendrick-von Foerster equation [46, 105]. Let u(a, t) be the
age density of a single-species population, where a ≥ 0 is the age and t ≥ 0
the time. Denote by b(a) and µ(a) the birth and death rate, respectively, of
the species of age a. Then the change du = utdt + uada of the population of
age a in a small increment of time dt equals −µ(a)udt [113, Sec. 1.7]. Here,
ut = ∂u/∂t and ua = ∂u/∂a. The birth rate b(a) only contributes to u(0, t)
since species are born at age a = 0. Dividing the equation for du by dt and
noting that da/dt = 1 since a is the chronological age, u(a, t) satisfies the
following hyperbolic equation with a nonlocal boundary condition:

ut + ua + µ(a)u = 0, t > 0, u(a, 0) = u0(a), a ≥ 0, (14)

u(0, t) =

∫ ∞

0

b(a)u(a, t)da, t > 0. (15)

This equation is sometimes referred to as the renewal equation since it de-
scribes how a population is renewed [59]. When we assume that the life span
is finite, a ∈ [0, a+] with a+ < ∞, this problem can be formulated as a
Volterra equation of second kind (for the variable B(t) := u(0, t)), which is
called the renewal or Lotka equation [64]. Using this formulation, it can be
shown [64, 146] that the solution of the renewal equation has the asymp-
totic behavior B(t) = B0 exp(λt)(1 + o(t)), where B0 ≥ 0, λ ∈ R, and o(t)
tends to zero as t → ∞. This means that the number of newborns changes
exponentially with rate λ, at least for large time.

Mischler et al. [110] have proved the existence and long-time behavior of
solutions to (14)-(15) without using a maximal life span condition (also see
[121]). Their idea is to use a generalized relative entropy method. To illustrate
this idea, we first observe that the death rate term can be eliminated via the
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transformation w(a, t) = em(a)u(a, t), where m(a) =
∫ a

0
µ(a)da, since w solves

the equation
wt + wa = 0, a ≥ 0, t > 0.

Therefore, we may assume, without any loss of generality, that µ(a) = 0. It is
convenient to introduce the variable v(a, t) = e−λtu(a, t), where (U, V, λ) with
U > 0, V ≥ 0, and λ > 0 are the first eigenelements of

Ua + λU = 0, a ≥ 0, U(0) =

∫ ∞

0

B(a)U(a)da,

∫ ∞

0

U(a)da = 1,

− Va + λV = V (0)B(a), a ≥ 0,

∫ ∞

0

U(a)V (a)da = 1.

The function U is the eigenfunction associated with the operator in (15),
with the first eigenvalue λ, and V is the eigenvector of the same eigenvalue
associated with the adjoint operator. The factor e−λt scales the population
density in such a way that v stays bounded for all time. In other words,
the population density grows exponentially with rate λ > 0, also called the
Malthus parameter.

The following entropy inequality holds for all convex functions H satisfying
H(0) = 0:

∫ ∞

0

U(a)H
(v(a, t)

U(a)

)

V (a)da ≤
∫ ∞

0

U(a)H
(u0(a)

U(a)

)

V (a)da, t ≥ 0.

This property allows one to show the long-time limit of v(·, t). The limit is
expected to be proportional to the steady state U . In fact, if u0 is bounded
by U , up to a factor, it follows that [121, Sec. 3.6]

lim
t→∞

∫ ∞

0

|v(a, t) − v0U(a)|V (a)da = 0,

where v0 =
∫ ∞

0
u0V da. Exponential decay can be shown under a (restrictive)

lower bound on the birth rate B [121, Sec. 3.7], and the decay rate depends
on this lower bound.

To some extend, the Lotka-McKendrick model is an age-structured version
of the Malthus model, introduced in Section 2. The drawback of both models
is the unlimited exponential growth of the population. In the literature, many
extensions and variants of the Lotka-McKendrick model have been proposed.
Here, we mention some of them.

A simple model for a cell division cycle with a single phase is the following
variant of the Lotka-McKendrick system [121, Sec. 3.9]:

ut + ua + µ(a)u = 0, t > 0, u(0, t) = 2

∫ ∞

0

µ(a)u(a, t)da,

with the initial condition u(·, 0) = u0, where µ is the mitosis (cell division)
rate. In this situation, a cell is withdrawn from the differential equation at age
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a with the rate µ(a) and it creates two daughter cells at age a = 0 with the
same rate. The (mathematical) advantage of this model is that its solutions
decay exponentially fast to the steady state under the natural assumption
that very young cells do not undergo mitosis (thus avoiding the restrictive
assumption on B needed in the model (14)-(15)).

When the birth and death rates depend on certain variables (sizes)
s1(t), . . . , sm(t), which represent different ways of weighting the age distri-
bution, we arrive at the system [119]

ut + ua + µ(a, s1, . . . , sm)u = 0, a ≥ 0,

u(0, t) =

∫ ∞

0

b(a, s1, . . . , sm)u(a, t)da,

si(t) =

∫ ∞

0

ci(a)u(a, t)da, i = 1, . . . ,m, t > 0,

together with an initial condition for u(·, 0). For i = 1 and c1(a) = 1, we obtain
the Gurtin-MacCamy model introduced in [59]. The existence and uniqueness
of solutions to this model is proved in [146] using a semigroup approach.
A numerical analysis was performed in [139]. A special case is given by the
logistic-growth model i = 1 with µ(a, s1) = µ0(a). The age-specific fertility b is
assumed to be nonnegative and decreasing with b(a,∞) = 0. This means that
the birth rate decreases when the weighted population average s1 becomes
larger.

In order to model the spatial dispersal of population species, one may
include diffusive terms leading to equations of the form

ut + ua + µ(a)u = div(d∇u), x ∈ Ω, a ≥ 0, t > 0,

where d > 0 is a diffusion coefficient and (Dirichlet or Neumann) boundary
conditions for x have to be imposed on ∂Ω. The population density u de-
pends on the spatial variable x, the age a, and time t. One of the first works
in this direction is due to Gurtin [58]. Gurtin and MacCamy [60] presented
age-structured models with random diffusion or directed diffusion to avoid
crowding. Mathematical results are presented, for instance, by MacCamy [99]
who studies nonlinear diffusion processes yielding porous-medium-type diffu-
sion equations. Di Blasio [14] proved the existence and uniqueness of solutions
to age-structured diffusion models, and Busenberg and Iannelli [18] analyzed
a degenerated diffusion problem. A finite-difference scheme was proposed by
Lopez and Trigiante [93]. Kim and Park [75] used finite differences in the
characteristic age-time direction and finite elements in the spatial variable.
A variable time step method was chosen by Ayati [8], and Pelovska [120]
developed an accelerated explicit scheme.

Size-structured models. For some organisms, age is not the most relevant
parameter, but rather the cell mass or its size. This leads to size-structured
population models in the size parameter x. In the following, we review some
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models from [121]. We distinguish between symmetric mitosis (two daughter
cells of size x emerge from a mother cell of size 2x) and asymmetric mitosis
(the emerging daughter cells have different size). In the symmetric case, the
population number u(x, t) may evolve according to

ut + ux + b(x)u(x, t) = 4b(2x)u(2x, t), u(0, t) = 0, u(x, 0) = u0(x), (16)

where x ≥ 0, t > 0, and b is the birth rate. The factor 4 can be understood
by computing the change of the population number,

d

dt

∫ ∞

0

u(x, t)dx = 4

∫ ∞

0

b(2x)u(2x, t)dx −
∫ ∞

0

b(x)u(x, t)dx

=

∫ ∞

0

b(x)u(x, t)dx,

which increases with rate b(x). Similar to the age-structured model (14)-(15),
the mathematical analysis relies on a certain eigenvalue problem with the first
eigenvalue λ (the Malthus parameter) and the corresponding eigenfunctions
U , V of the stationary and dual problem, respectively. Perthame and Ryzhik
[122] proved that for constant birth rate b(x) = b0, it holds λ = b0, V = 1,
and

∥

∥

∥
e−b0tu(·, t) − U

∫ ∞

0

u0dx
∥

∥

∥

L1(0,∞)
≤ Ce−b0t, t ≥ 0,

and the constant C > 0 depends on the initial datum u0. A similar result
holds for nonconstant birth rates, see [122]. For a numerical solution, we refer
to [35].

When the mitosis is asymmetric, we have to change the term on the right-
hand side of (16):

ut + ux + b(x)u(x, t) =

∫ ∞

x

β(x, y)u(y, t)dy.

This models the division of a mother cell of size y into two daughter cells of
sizes x and x − y with rate β(x, y). Under suitable assumptions on b, β, and
u0, the exponential decay of (a rescaled version of) u(x, t) to the steady state
is proved by Michel et al. [107]. Furthermore, an equation in which the effects
of cell division and aggregation are incorporated by coupling the coagulation-
fragmentation equation with the Lotka-McKendrick model was analyzed by
Banasiak and Lamb [9].

In the literature, also size-structured models with (v(u)u)x instead of ux

in (16) and different expressions on the right-hand side have been employed,
interpreting v(u) as a growth rate, for instance in [71] for optimal harvest
modeling and in [42, 43] for linear stability and instability results of stationary
solutions. For more models and references, we refer to the monographs of Metz
and Dieckmann [106] and Cushing [28].



Diffusive and nondiffusive population models 21

6 Time-delayed population models

The change in the population number of a species may not respond immedi-
ately to changes in its population or that of an interacting species, but rather
after a certain time lag. Time delay in population dynamics models, for in-
stance, the gestation or maturation time of a species or the time taken for
food resources to regenerate. Hutchinson [63] postulated the equation

du

dt
= u(t)

(

a − bu(t − T )
)

, t > 0, u(0) = u0, (17)

where a, b > 0, which was analyzed by May in [104]. Whithout delay, T = 0,
we recover the logistic-growth equation with the stable steady state u = a/b.
In case of delay, T > 0, May discovered an interplay between the stabilizing
resource limitation and the destabilizing time lag. More precisely, if aT < π/2,
u = a/b is still a stable steady state, which becomes unstable if aT > π/2.
When the time lag is not constant, one may employ the distributed delay
equation

du

dt
= u(t)

(

a −
∫ t

−∞

b(t − s)u(s)ds
)

, t > 0, u(0) = u0.

The model of May was generalized and applied to the modeling of Australian
sheep-blowfly populations by Gurney et al. [57]. Diffusive versions can be
found in [138, 148]. Time delay may be used to model immature and mature
stages; see [2] for an example. For the analysis of a system of delayed equations,
we refer to [4]. More references can be found in the monograph of Kuang [81].

Spatial structures have been also considered in delayed models. A simple
diffusive extension of the Hutchinson equation (17) is given by

ut − ∆u = u(t)
(

a − bu(t − T )
)

.

More elaborate models have been proposed by Gourley and Kuang [54]. Gour-
ley et al. [56] argue that diffusion and time delays are not independent of each
other, since individuals may be at different points in space at past times.
Britton [16] has suggested a delay term which involves a weighted spatial
averaging over the (infinite) domain in order to account for the drift of the in-
dividuals from all possible positions at previous times to the present position.
The equation becomes

ut − ∆u = u
(

1 + αu − (1 + α)g ∗ u
)

, x ∈ R
n, (18)

where g is a given function and g ∗ u is a convolution in the spatio-temporal
variables. The term αu represents the advantageous local aggregation due
to high mating probability, for instance; the convolution −(1 + α)g ∗ u with
α > −1 models the intra-specific competition due to resource limitations in
a neighborhood of the original position. When g is a delta distribution, we
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recover the Fisher equation (see Section 3). The particular choice g(x) =
e−|y| is the Green’s function for an ordinary differential equation, and (18)
can be reduced to a system of two local equations analyzed by Billingham
[13]. General kernels were considered by Deng [33], establishing the existence,
uniqueness, and long-time behavior of solutions. Furthermore, Gourley and
Britton [53] studied the linear stability of a related predator-prey system.
Equation (18) is an example of a parabolic equation with a functional term;
general nonlocal parabolic problems were treated by Redlinger [124].

Population models in bounded domains have been proposed by Gourley
and So [55]. The nonlinear stability of traveling wavefronts in a related single-
species model was proved by Li, Mei, and Wong [91]. Xu and Zhao [150] showed
the existence of a global attractor of a nonlocal reaction-diffusion model with
time delay. A survey on nonlocal population models, induced by time delays,
and more references can be found in [56].

An equation with a time lag in the spatial variable has been proposed
recently by Berestycki et al. [11] in order to study the impact of climate
change on the dynamics of an affected species:

ut − ∆u = uf(x − cte, u), x ∈ R
n, t > 0,

where c is a constant and e is a unit vector. The space dependence of the
growth rate f is affected by the time under the action x − cte, i.e., the zones
with favorable climate change shift in the direction e with speed c. Heuris-
tically, we expect that populations manage to persist by migrating in the
direction e. Indeed, it is shown in [12] that traveling wave solutions of the
type u(x, t) = v(x − cte) exist if the climate shift is not too large (i.e., c > 0
is sufficiently small), otherwise there is extinction.
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