Fundamental Groups of Solenoid Complements

Mark Meilstrup
University of Leoben

Groups and Topological Groups TU Wien 12 December, 2010

Definition

Let S^1 denoted the unit circle in the complex plane.

For an integer n > 1, define $f_n : S^1 \to S^1$ by $f_n(z) = z^n$.

Definition

Given a sequence n_1, n_2, n_3, \ldots , we get a *solenoid* as the inverse limit

$$\Sigma = \varprojlim(S^1, f_{n_i})$$

$$\cdots \to S^1 \xrightarrow{f_{n_3}} S^1 \xrightarrow{f_{n_2}} S^1 \xrightarrow{f_{n_1}} S^1$$

Dyadic Solenoid

If the sequence of integers is $2, 2, 2, \dots$ ($n_i \equiv 2$), then the resulting solenoid is called the *dyadic solenoid*.

The dyadic solenoid is the most commonly discussed solenoid, and most of the specific examples in this talk will use the dyadic solenoid.

Properties of Solenoids

The sequence $\{n_i\}$ determines the solenoid, but not uniquely – different sequences can give rise to the same space.

The following do not change the solenoid:

- Removing finitely many numbers from the sequence.
- Infinite reordering of the sequence.
- Replacing a number by its factorization, e.g.

$$2,6,5,\ldots \sim 2,2,3,5,\ldots$$

Properties of Solenoids

A few facts about solenoids:

- A solenoid is a compact connected topological group.
- A solenoid has uncountably many path components.
- Each path component is dense in the solenoid.
- Each path component is "like unto" \mathbb{R} .
- A solenoid is not locally connected, nor is any of its path components.

Solenoids in \mathbb{R}^3

While it is not obvious from the definition as an inverse limit of circles, every solenoid can in fact be embedded in \mathbb{R}^3 .

This can be achieved as a nested intersection of solid tori T_i , each of which loops around the previous torus n_i times.

Solenoids in \mathbb{R}^3 : T_0

Solenoids in \mathbb{R}^3 : $T_0 \supset T_1$

Solenoids in $\mathbb{R}^3: T_0\supset T_1\supset T_2$

Solenoids in \mathbb{R}^3 : $T_1 \supset T_2$

Solenoids in \mathbb{R}^3 : $\Sigma = \bigcap T_i$

Fundamental Groups

When a solenoid Σ is embedded in S^3 (or \mathbb{R}^3), the complement $\Sigma^c=S^3-\Sigma$ is an open 3-manifold.

We will discuss the fundamental groups of such manifolds, which depends on the embedding of Σ into S^3 .

We use the Seifert Van Kampen Theorem to get a presentation for the fundamental group.

Solenoids

Recall that the solenoid is the nested intersection of solid tori:

$$T_0 \supset T_1 \supset T_2 \supset \dots$$

$$\Sigma = \bigcap T_i$$

Similarly, the complement is an increasing union:

$$S^{3} - T_{0} \subset S^{3} - T_{1} \subset S^{3} - T_{2} \subset \dots$$
$$\Sigma^{c} = \bigcup (S^{3} - T_{i})$$

Solenoids

Lemma

Let $\Sigma = \bigcap T_i$ be a solenoid in S^3 realized as the nested intersection of solid tori.

Then
$$\pi_1(S^3 - \Sigma) = \varinjlim_i \pi_1(S^3 - T_i) = \bigcup_i \pi_1(S^3 - T_i).$$

In particular, the maps $\pi_1(S^3 - T_i) \to \pi_1(S^3 - \Sigma)$ are injective.

$\pi_1(T_{i-1}-T_i)$

Our solenoid complement can be broken up into pieces $(T_{i-1} - T_i)$ that are each a solid torus minus a smaller solid torus that wraps around n_i times.

$\pi_1(T_{i-1}-T_i)$

The fundamental group $\pi_1(T_{i-1}-T_i)$ can be calculated by considering it as a mapping cylinder over an n_i -punctured disk.

$$\pi_1(T_{i-1}-T_i)$$

The fundamental group $\pi_1(T_{i-1} - T_i)$ can be calculated by considering it as a mapping cylinder over an n_i -punctured disk.

$$\pi_1(T_{i-1}-T_i)=\langle t,x_1,\ldots,x_{n_i} \mid t^{-1}x_kt=w_k(x_1,\ldots,x_{n_i})\rangle$$

Here w_k is some word in the x_j 's, depending on the embedding (braiding) of one solid torus inside the previous.

Figure 8 Knot

Dyadic Solenoid – Trefoil

Dyadic Solenoid – Unknot

Dyadic Solenoid - Another Unknot

Seifert Van Kampen

Consecutive solid torus pieces share a common torus boundary, and we use this in the Seifert Van Kampen Theorem.

Seifert Van Kampen

Theorem (Seifert Van Kampen)

Let U, V be open sets in X such that $X = U \cup V$ and $U \cap V$ is path connected. Then

$$\pi_1(X) = \pi_1(U) *_C \pi_1(V)$$
 where $C = \pi_1(U \cap V)$.

Seifert Van Kampen

With this we get relations such as

$$x_{(i-1)1} = \prod_{k=1}^{n_i} x_{(i)k}, \qquad t_{(i)} = t_{(i-1)}^{n_i} v_{(i)}(x_{(i)1}, \dots, x_{(i)n_i}).$$

- $x_{(i)k}$ is a meridian of T_i
- $t_{(i)}$ is a longitude of T_i
- $x_{(i)k}, t_{(i-1)}$ correspond to $\pi_1(T_{i-1} T_i)$
- $v_{(i)}$ is a word determined by the embedding $T_i \subset T_{i-1}$

Presentation for π_1

In general, we get an infinite presentation for $\pi_1(\Sigma^c)$.

The generators are $t_{(i)}, x_{(i)k}$ from each level i, with $k = 1, \dots, n_i$.

The relations come from each level and Van Kampen.

Also note that $t_{(0)} = e$, since the longitude of T_0 is trivial in S^3 .

$$\pi_1(\Sigma^c) = \left\langle t_{(i)}, x_{(i)k} \middle| t_{(i-1)}^{-1} x_{(i)k} t_{(i-1)} = w_{(i)k}(\{x_{(i)k}\}), t_{(0)} = e, \right.$$

$$\left. x_{(i-1)1} = \prod_{k=1}^{n_i} x_{(i)k}, t_{(i)} = t_{(i-1)}^{n_i} v_{(i)}(\{x_{(i)k}\}) \right\rangle$$

Dyadic Solenoid

In the case of the dyadic solenoid ($n_i \equiv 2$), our presentation for π_1 simplifies.

There are only two $x_{(i)k}$'s at each level i, and since $x_{(i-1)1} = x_{(i)1}x_{(i)2}$, we do not actually need the $x_{(i)2}$'s.

If we let $z_i = x_{(i)1}$ be the meridian of T_i , and $s_i = t_{(i)}$ the longitude of T_i , we then get a simplified presentation:

$$\pi_1 = \left\langle s_i, z_i \mid [s_i, z_i] = e, R, s_0 = e \right\rangle$$

Dyadic Solenoid - Unknotted

If each solid torus T_i is unknotted in S^3 , we get:

$$\langle s_i, z_i \mid [s_i, z_i] = e, s_i^{-1} z_{i+1} s_i = z_{i+1}^{-1} z_i, s_{i+1} = s_i^2 z_i z_{i+1}^{-2}, s_0 = e \rangle$$

Dyadic Solenoid – Unknotted

If each solid torus T_i is unknotted in S^3 , we get:

$$\langle s_i, z_i \mid [s_i, z_i] = e, s_i^{-1} z_{i+1} s_i = z_{i+1}^{-1} z_i, s_{i+1} = s_i^2 z_i z_{i+1}^{-2}, s_0 = e \rangle$$

Note that if $s_i = e$, then $z_{i+1}^2 = z_i$, and then $s_{i+1} = s_i^2 = e$. Thus this group becomes

$$\langle z_i \mid z_{i+1}^2 = z_i \rangle = \underline{\lim}(\mathbb{Z}, 2)$$

which is just the dyadic rationals $\left\{\frac{a}{2^n} \in \mathbb{Q}\right\}$.

Unknotted Solenoids

Unknotted Solenoids

Theorem (Unknotted Embeddings)

- For every solenoid Σ , there is an embedding into S^3 such that $\pi_1(\Sigma^c) \leq \mathbb{Q}$.
- For every non-trivial subgroup $G \leq \mathbb{Q}$, there is a solenoid Σ_G and an embedding such that $\pi_1(\Sigma_G^c) = G$.

In particular, $\pi_1(\Sigma^c)$ is Abelian.

We call such an embedding of Σ *unknotted*. This corresponds to each torus T_i being unknotted in S^3 .

Unknotted Solenoids

Every solenoid can be embedded in an unknotted way.

In this case, if Σ is defined by the sequence $\{n_i\}$ then

$$\pi_1\left(\Sigma^c
ight) = H_1\left(\Sigma^c
ight) = \left\{rac{p}{q} \in \mathbb{Q} \;\middle|\; q = \prod_{i=1}^k n_i ext{ for some } k
ight\}.$$

Lemma

Every non-trivial subgroup of $\mathbb Q$ is isomorphic to one of these.

Dyadic Solenoid - Knotted

If each solid torus is a trefoil knot inside the previous:

$$\langle s_i, z_i \mid [s_i, z_i] = e, s_i^{-1} z_{i+1} s_i = z_i^{-1} z_{i+1}^{-1} z_i^2, s_{i+1} = s_i^2 z_i^3 z_{i+1}^{-6}, s_0 = e \rangle$$

Dyadic Solenoid - Knotted

If each solid torus is a trefoil knot inside the previous:

$$\langle s_i, z_i \mid [s_i, z_i] = e, s_i^{-1} z_{i+1} s_i = z_i^{-1} z_{i+1}^{-1} z_i^2, s_{i+1} = s_i^2 z_i^3 z_{i+1}^{-6}, s_0 = e \rangle$$

Note that if we Abelianize, then $z_{i+1}^2 = z_i$, and then $s_{i+1} = s_i^2 = e$.

Thus $H_1 = (\pi_1)_{Ab}$ is the dyadic rationals as before.

Dyadic Solenoid - Knotted

However, this group is not Abelian, as it maps onto the infinite alternating group A_{∞} .

$$\langle s_i, z_i \mid [s_i, z_i] = e, s_i^{-1} z_{i+1} s_i = z_i^{-1} z_{i+1}^{-1} z_i^2, s_{i+1} = s_i^2 z_i^3 z_{i+1}^{-6}, s_0 = e \rangle$$

Map the elements z_i to the generators (i (i + 1) (i + 2)), and send each s_i to the identity.

We can easily check that the relations are satisfied.

(Note that consecutive 3-cycles satisfy $z_{i+1} = z_i^{-1} z_{i+1}^{-1} z_i^2$.)

Alexander Duality

For a fixed solenoid Σ , the first homology of the complement is always the same, independent of the embedding in S^3 .

This result follows from Alexander Duality, but can also be seen directly from our presentations for π_1 .

Theorem (Alexander Duality)

For compact
$$K \subset S^n$$
, $H_i(S^n - K) \cong \check{H}^{n-i-1}(K)$

$$(\pi_1(\Sigma^c))_{\mathsf{Ab}} = H_1(\Sigma^c) \equiv \check{H}^1(\Sigma) \leq \mathbb{Q}$$

Knotted Solenoids

Theorem (Knotted Embeddings)

For every solenoid Σ , there is an embedding into S^3 such that $\pi_1(\Sigma^c)$ is non-Abelian.

Conjecture

Every solenoid has infinitely many knotted embeddings with distinct non-Abelian fundamental groups.

Distinct Knotted Embeddings

Theorem

Every solenoid has infinitely many knotted embeddings with non-homeomorphic complements.

The proof actually gives embeddings corresponding to almost all defining sequences $\{n_i\}$, with the only exception being for the dyadic solenoid in the case that eventually $n_i \equiv 2$.

Extended JSJ-Decomposition

Theorem

Let $\Sigma = \bigcap T_i$ be embedded as the intersection of nested solid tori T_i in S^3 , such that infinitely many of the pieces $(T_{i-1} - T_i)$ are hyperbolic.

Then the complement $S^3-\Sigma$ has a canonical extended JSJ-decomposition by incompressible tori into pieces that are either hyperbolic or Seifert fibered.

Hyperbolic *n*-Braids

Proposition

Given $n \ge 3$, there are multiple n-braids in a solid torus with distinct hyperbolic structures.

Theorem (Mostow-Prasad Rigidity)

If a 3-manifold admits a complete hyperbolic structure with finite volume, then that structure is unique up to isometry.

The End

THE EMD.

