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Definition

Let S1 denoted the unit circle in the complex plane.

For an integer n > 1, define fn : S1 → S1 by fn(z) = zn.

Definition
Given a sequence n1, n2, n3, . . . , we get a solenoid as the
inverse limit

Σ = lim←−(S1, fni)

· · · → S1 fn3−→ S1 fn2−→ S1 fn1−→ S1
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Dyadic Solenoid

If the sequence of integers is 2, 2, 2, . . . (ni ≡ 2),
then the resulting solenoid is called the dyadic solenoid.

The dyadic solenoid is the most commonly discussed solenoid,
and most of the specific examples in this talk will use the dyadic
solenoid.
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Properties of Solenoids

The sequence {ni} determines the solenoid, but not uniquely –
different sequences can give rise to the same space.

The following do not change the solenoid:
Removing finitely many numbers from the sequence.
Infinite reordering of the sequence.
Replacing a number by its factorization, e.g.
2, 6, 5, . . . ∼ 2, 2, 3, 5, . . .
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Properties of Solenoids

A few facts about solenoids:
A solenoid is a compact connected topological group.
A solenoid has uncountably many path components.
Each path component is dense in the solenoid.
Each path component is “like unto” R.
A solenoid is not locally connected, nor is any of its path
components.
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Solenoids in R3

While it is not obvious from the definition as an inverse limit of
circles, every solenoid can in fact be embedded in R3.

This can be achieved as a nested intersection of solid tori Ti,
each of which loops around the previous torus ni times.
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Solenoids in R3 : T0
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Solenoids in R3 : T0 ⊃ T1
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Solenoids in R3 : T0 ⊃ T1 ⊃ T2
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Solenoids in R3 : T1 ⊃ T2
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Solenoids in R3 : Σ =
⋂

Ti
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Fundamental Groups

When a solenoid Σ is embedded in S3 (or R3), the complement
Σc = S3 − Σ is an open 3-manifold.

We will discuss the fundamental groups of such manifolds,
which depends on the embedding of Σ into S3.

We use the Seifert Van Kampen Theorem to get a presentation
for the fundamental group.
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Solenoids

Recall that the solenoid is the nested intersection of solid tori:

T0 ⊃ T1 ⊃ T2 ⊃ . . .

Σ =
⋂

Ti

Similarly, the complement is an increasing union:

S3 − T0 ⊂ S3 − T1 ⊂ S3 − T2 ⊂ . . .

Σc =
⋃

(S3 − Ti)
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Solenoids

Lemma

Let Σ =
⋂

Ti be a solenoid in S3 realized as the nested
intersection of solid tori.

Then π1(S3 − Σ) = lim−→
i
π1(S3 − Ti) =

⋃
i

π1(S3 − Ti).

In particular, the maps π1(S3 − Ti)→ π1(S3 − Σ) are injective.
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π1(Ti−1 − Ti)

Our solenoid complement can be broken up into pieces
(Ti−1 − Ti) that are each a solid torus minus a smaller solid
torus that wraps around ni times.
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π1(Ti−1 − Ti)

The fundamental group π1(Ti−1 − Ti) can be calculated by
considering it as a mapping cylinder over an ni-punctured disk.

x1

x2

x3

t
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π1(Ti−1 − Ti)

The fundamental group π1(Ti−1 − Ti) can be calculated by
considering it as a mapping cylinder over an ni-punctured disk.

π1(Ti−1 − Ti) =
〈

t, x1, . . . , xni

∣∣∣ t−1xkt = wk(x1, . . . , xni)
〉

Here wk is some word in the xj’s, depending on the embedding
(braiding) of one solid torus inside the previous.
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Figure 8 Knot
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Dyadic Solenoid – Trefoil
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Dyadic Solenoid – Unknot
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Dyadic Solenoid – Another Unknot
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Seifert Van Kampen

Consecutive solid torus pieces share a common torus
boundary, and we use this in the Seifert Van Kampen Theorem.
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Seifert Van Kampen

Theorem (Seifert Van Kampen)
Let U,V be open sets in X such that X = U ∪ V and U ∩ V is
path connected. Then

π1(X) = π1(U) ∗C π1(V) where C = π1(U ∩ V).
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Seifert Van Kampen

With this we get relations such as

x(i−1)1 =

ni∏
k=1

x(i)k, t(i) = tni
(i−1)v(i)(x(i)1, . . . , x(i)ni).

x(i)k is a meridian of Ti

t(i) is a longitude of Ti

x(i)k, t(i−1) correspond to π1(Ti−1 − Ti)

v(i) is a word determined by the embedding Ti ⊂ Ti−1
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Presentation for π1

In general, we get an infinite presentation for π1(Σc).

The generators are t(i), x(i)k from each level i, with k = 1, . . . , ni.

The relations come from each level and Van Kampen.

Also note that t(0) = e, since the longitude of T0 is trivial in S3.

π1(Σc) =
〈

t(i), x(i)k
∣∣∣ t−1

(i−1)x(i)kt(i−1) = w(i)k({x(i)k}), t(0) = e,

x(i−1)1 =

ni∏
k=1

x(i)k, t(i) = tni
(i−1)v(i)({x(i)k})

〉
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Dyadic Solenoid

In the case of the dyadic solenoid (ni ≡ 2), our presentation for
π1 simplifies.

There are only two x(i)k’s at each level i, and since
x(i−1)1 = x(i)1x(i)2, we do not actually need the x(i)2’s.

If we let zi = x(i)1 be the meridian of Ti, and si = t(i) the
longitude of Ti, we then get a simplified presentation:

π1 =
〈

si, zi

∣∣∣ [si, zi] = e,R, s0 = e
〉
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Dyadic Solenoid – Unknotted

If each solid torus Ti is unknotted in S3, we get:〈
si, zi

∣∣∣ [si, zi] = e, s−1
i zi+1si = z−1

i+1zi, si+1 = s2
i ziz−2

i+1, s0 = e
〉

Note that if si = e, then z2
i+1 = zi, and then si+1 = s2

i = e.
Thus this group becomes〈

zi

∣∣∣ z2
i+1 = zi

〉
= lim−→(Z, 2)

which is just the dyadic rationals
{ a

2n ∈ Q
}

.
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Dyadic Solenoid – Unknotted

If each solid torus Ti is unknotted in S3, we get:〈
si, zi

∣∣∣ [si, zi] = e, s−1
i zi+1si = z−1

i+1zi, si+1 = s2
i ziz−2

i+1, s0 = e
〉

Note that if si = e, then z2
i+1 = zi, and then si+1 = s2

i = e.
Thus this group becomes〈

zi

∣∣∣ z2
i+1 = zi

〉
= lim−→(Z, 2)

which is just the dyadic rationals
{ a

2n ∈ Q
}

.
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Unknotted Solenoids
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Unknotted Solenoids

Theorem (Unknotted Embeddings)

For every solenoid Σ, there is an embedding into S3 such
that π1(Σc) ≤ Q.

For every non-trivial subgroup G ≤ Q, there is a solenoid
ΣG and an embedding such that π1(Σc

G) = G.

In particular, π1(Σc) is Abelian.

We call such an embedding of Σ unknotted.
This corresponds to each torus Ti being unknotted in S3.
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Unknotted Solenoids

Every solenoid can be embedded in an unknotted way.

In this case, if Σ is defined by the sequence {ni} then

π1 (Σc) = H1 (Σc) =

{
p
q
∈ Q

∣∣∣∣∣ q =

k∏
i=1

ni for some k

}
.

Lemma
Every non-trivial subgroup of Q is isomorphic to one of these.
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Dyadic Solenoid – Knotted

If each solid torus is a trefoil knot inside the previous:〈
si, zi

∣∣∣ [si, zi] = e, s−1
i zi+1si = z−1

i z−1
i+1z2

i , si+1 = s2
i z3

i z−6
i+1, s0 = e

〉

Note that if we Abelianize, then z2
i+1 = zi, and then si+1 = s2

i = e.

Thus H1 = (π1)Ab is the dyadic rationals as before.
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Dyadic Solenoid – Knotted

If each solid torus is a trefoil knot inside the previous:〈
si, zi

∣∣∣ [si, zi] = e, s−1
i zi+1si = z−1

i z−1
i+1z2

i , si+1 = s2
i z3

i z−6
i+1, s0 = e

〉
Note that if we Abelianize, then z2

i+1 = zi, and then si+1 = s2
i = e.

Thus H1 = (π1)Ab is the dyadic rationals as before.
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Dyadic Solenoid – Knotted

However, this group is not Abelian, as it maps onto the infinite
alternating group A∞.〈

si, zi

∣∣∣ [si, zi] = e, s−1
i zi+1si = z−1

i z−1
i+1z2

i , si+1 = s2
i z3

i z−6
i+1, s0 = e

〉
Map the elements zi to the generators

(
i (i + 1) (i + 2)

)
,

and send each si to the identity.

We can easily check that the relations are satisfied.

(Note that consecutive 3-cycles satisfy zi+1 = z−1
i z−1

i+1z2
i .)
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Alexander Duality

For a fixed solenoid Σ, the first homology of the complement is
always the same, independent of the embedding in S3.

This result follows from Alexander Duality, but can also be seen
directly from our presentations for π1.

Theorem (Alexander Duality)

For compact K ⊂ Sn, Hi(Sn − K) ∼= Ȟn−i−1(K)

(π1(Σc))Ab = H1(Σc) ≡ Ȟ1(Σ) ≤ Q
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Knotted Solenoids

Theorem (Knotted Embeddings)

For every solenoid Σ, there is an embedding into S3 such that
π1(Σc) is non-Abelian.

Conjecture
Every solenoid has infinitely many knotted embeddings with
distinct non-Abelian fundamental groups.
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Distinct Knotted Embeddings

Theorem
Every solenoid has infinitely many knotted embeddings with
non-homeomorphic complements.

The proof actually gives embeddings corresponding to almost
all defining sequences {ni}, with the only exception being for
the dyadic solenoid in the case that eventually ni ≡ 2.
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Extended JSJ-Decomposition

Theorem
Let Σ =

⋂
Ti be embedded as the intersection of nested solid

tori Ti in S3, such that infinitely many of the pieces (Ti−1 − Ti)
are hyperbolic.

Then the complement S3 − Σ has a canonical extended
JSJ-decomposition by incompressible tori into pieces that are
either hyperbolic or Seifert fibered.
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Hyperbolic n-Braids

Proposition
Given n ≥ 3, there are multiple n-braids in a solid torus with
distinct hyperbolic structures.

Theorem (Mostow-Prasad Rigidity)

If a 3-manifold admits a complete hyperbolic structure with finite
volume, then that structure is unique up to isometry.
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The End

THE END.
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