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1 Notation and Conventions

The following is a list of symbols frequently used in the text. Most of them
are common and those that are not will also be introduced as they occur in
the text.

For a topological space X, x ∈ X, we denote by

C(X) . . . the space of continuous (complex-valued) functions on X

Cc(X) . . . {f ∈ C(X)
∣∣ f has compact support}

C0(X) . . . {f ∈ C(X)
∣∣ ∀ ε > 0∃K compact such thatf(x) < ε∀x ∈ Kc}

U(x) . . . the �lter of neighborhoods of x.

If X is even a topological vector space, M ⊂ X, we de�ne

X∗ . . . the algebraic dual of X, i.e. all linear functionals on X

X ′ . . . the topological dual of X, i.e. all continuous linear

functionals on X

(X, τw) . . . X with the weak topology τw

(X ′, τw∗) . . . X ′ with the weak-star topology τw∗

coM . . . the convex hull of M

coM . . . coM

E(M) . . . the set of extremal points of M.

For arbitrary sets A,B we write A ⊂ B to say that A ( B or A = B.

We use the following terminology concerning measures on a topological
Hausdor� space X:

Borel measure: A measure (i.e. a non-negative σ-additive function) de-
�ned on the Borel sets of X.

Radon measure: A Borel measure that is inner regular and �nite on com-
pact sets.

For a group (G, ·,−1, e) we usually write gh instead of · (g, h) to denote
multiplication of elements g, h ∈ G.
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2 Introduction

A topological group is a group (G, ·,−1, e) equipped with a topology such
that the mappings

G×G→ G : (g, h) 7→ gh

G→ G : g 7→ g−1

are continuous. For the discussion in this section, we also assume that,
viewed as a topological space, G is Hausdor� and locally compact.1

An interesting question is whether it is possible to �nd a measure µ on
the Borel sets of G that is compatible with both the topological and algebraic
structure of G. By this we mean that

a) µ is a Radon measure (i.e. a measure which is inner regular and �nite
on compact sets)

b) µ is invariant under translation, i.e. µ(Ag) = µ(A) = µ(gA) for all
Borel sets A ⊂ G and elements g ∈ G.2

We will also require µ to be non-trivial: µ 6= 0. A measure with these
properties is called Haar measure. If in b), only µ(gA) = µ(A) (and not
necessarily µ(Ag) = µ(A) ) is satis�ed, we call µ a left Haar measure. A
right Haar measure is de�ned in an analogous way.

In 1933, Alfréd Haar proved the existence of a left Haar measure on topo-
logical groups that are Hausdor�, compact and separable. André Weil gen-
eralized this result to arbitrary locally compact topological Hausdor� groups
and showed that (left) Haar measures are unique up to multiplication by a
positive constant. In the present paper we present a proof for the existence
and uniqueness of a Haar measure on compact topological Hausdor� groups
based on the Ryll-Nardzweski �xed point theorem from functional analysis.

Before doing so, let us consider a few familiar examples of locally compact
groups and their Haar measures:

Examples. [Els09] [Wik11]

1This is a convenient setting for studying Borel measures on G. It allows us to un-
derstand a large class of them (all Radon measures) as continuous linear functionals on
Cc(G). In fact, the de�nition of Radon measures as it is given below would not even make
sense for arbitrary topological spaces G, since compact sets need not be Borel measur-
able in non-Hausdor� spaces. (In Hausdor� spaces compact sets are closed and therefore
measurable.)

2Note that µ(gA) and µ(Ag) are well-de�ned since the translation by elements of G is
continuous and, therefore, gA and Ag are Borel-measurable if A is.
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(i) The counting measure on any �nite group.

(ii) The standard Lebesgue measure on (Rn,+).

(iii) For the multiplicative group (R\{0}, ·) the measure

A 7→
∫
A

1

|t|
dλ(t)

is translation invariant by the change of variable formula.

(iv) For the complex unit circle ∂U1(0) = {z ∈ C
∣∣ |z| = 1} with standard

multiplication as group operation, a Haar measure is given by

A 7→ λ ( {t ∈ (0, 2π)
∣∣ eit ∈ A} ),

where λ is the usual Lebesgue measure on R.

In the examples above all measures are both left- and right-invariant. For
compact Hausdor� groups and locally compact abelian Hausdor� groups left-
invariance always implies right-invariance and vice versa. (This is trivial for
abelian groups and, for compact groups, will be established in this paper.)
However, for arbitrary locally compact Hausdor� groups, a measure that is
left-invariant need not be right-invariant (and vice versa).

As in this section, all topological groups we consider in the rest of this pa-
per are Hausdor� (and locally compact). Since �locally compact topological
Hausdor� group� is tedious to write we agree upon the following abbrevia-
tion:

In the rest of this paper �group� is short for �topological Haus-
dor� group� .

3 Fixed point formulation

Let G be a compact group3. Every Haar measure µ for G must be �nite, so it
is not a restriction to demand µ(G) = 1. We will impose this normalization
condition for Haar measures on compact groups in all subsequent chapters
without explicitly referring to µ as �normalized Haar measure�.

With this convention a Haar measure for G is a point in the set

Q := {µ
∣∣µ is Radon measure and µ(G) = 1}

3See the box above for the terminology used.
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that is �xed under the family of mappings

F := {Rg
∣∣ g ∈ G} ∪ {Lg ∣∣ g ∈ G},

where4

Rg : Q→ Q : µ 7→ µ(· g)

Lg : Q→ Q : µ 7→ µ(g ·).

At the moment Q is simply a set without any topological or algebraic
properties (such as compactness or convexity). Having in mind to apply a
�xed point theorem from functional analysis, we would like to view Q as a
subset of an appropriate topological vector space. In the following, we de�ne
the appropriate setting and derive a few properties of Q and F .

The set Q of �points�

The Riesz representation theorem for Radon measures on G allows us to
interpret Q as a subset Q̂ of C(G)′ and to translate all results obtained for
Q̂ back to Q. We recall the precise connection:

Theorem 3.1 (Riesz representation theorem). Let G be a locally compact

Hausdor� space. The mapping

Φ : µ 7→ Iµ :=

∫
G
· dµ

is a bijection from the set of Radon measures on G to the set of positive

linear functionals on Cc(G).

A proof can be found in [Els09].

Let Q̂ := Φ(Q) ⊂ Cc(G)∗. Because G is compact, Cc(G) = C(G). More-
over, every Radon measure µ on G is �nite and, therefore, the corresponding
functional Iµ is continuous on C(G) with respect to the supremum norm:
Q̂ ⊂ C(G)′. More speci�cally,5

Q̂ = Φ(Q) = {I ∈ C(G)′
∣∣ I is positive and I(1) = 1} =

= U1(0) ∩ ι−11 (1) ∩
⋂
f≥0

ι−1f (R+
0 ).

Here, U1(0) is the unit ball in C(G)′ (with respect to the operator norm)
and, for f ∈ C(G), ιf is the linear functional

ιf : C(G)′ → C : I 7→ I(f).

4We write µ(· g) for the measure A 7→ µ(Ag), de�ned on the Borel sets of G. This
measure indeed lies in Q, since translation by g is a homeomorphism and the topological
properties of µ are therefore preserved. Moreover, µ(Gg) = µ(G) = 1.

5By I(1) we mean I evaluated at the constant function (G 3 x 7→ 1) ∈ C(G).
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Since ιf is w∗-continuous for all f ∈ C(G) and U1(0) is w∗-compact by

Alaoglu's theorem, the set Q̂ is w∗-compact. Clearly, Q̂ is convex. In sum-
mary, Q̂ is a compact, convex subset of the locally convex topological vector
space (C(G)′, τw∗).

The set F of �functions�

The measure µ ∈ Q is a �xed point of the family F , i.e. a Haar measure, i�
Iµ ≡ Φ(µ) is a �xed point of

F̂ := {R̂g
∣∣ g ∈ G} ∪ {L̂g ∣∣ g ∈ G},

where R̂g := Φ ◦ Rg ◦ Φ−1
∣∣
Q̂
and L̂g := Φ ◦ Lg ◦ Φ−1

∣∣
Q̂
. More explicitly,

R̂g maps the functional Iµ ∈ Q̂ to the functional Φ(Rgµ) =
∫
G · d(Rgµ), so

using the change of variable formula for image measures we obtain R̂gIµ(f) =
Iµ(f(g ·)), f ∈ C(G). In summary, for I ∈ Q̂, f ∈ C(G):

R̂gI(f) = I(f(g ·))
L̂gI(f) = I(f(· g)).

We want to apply the Ryll-Nardzewski �xed point theorem to an ap-
propriate set of functions S ⊃ F̂ from Q̂ into itself. The conditions of the
theorem (see Theorem 5.1 below) are, among others, that S be a semigroup
with respect to composition: S1S2 ∈ S if S1, S2 ∈ S. The set F is not a
semigroup, but we can consider, instead of F̂ , the semigroup S generated by
F̂ , which has the same �xed points:

S := 〈F̂〉 = {R̂gL̂h
∣∣ g, h ∈ G}.

Note that the set on the right hand side is indeed a semigroup, since R̂g
and L̂h commute and R̂g1R̂g2 = R̂g2g1 , L̂h1L̂h2 = L̂h1h2 . Obviously, it is the
smallest semigroup containing all R̂g, L̂h, so the equality holds.

Clearly, all functions in S map Q̂ into itself. We now verify the remaining
properties of S, viewed as a family of functions on Q̂ ⊂ (C(G)′, τw∗), that
are needed for the Ryll-Nardzewski theorem:

• Every S ∈ S is a�ne6: S(
∑n

i=1 αiIi) =
∑n

i=1 αiS(Ii) for Ii ∈ Q̂, αi ∈
[0, 1],

∑n
i=1 αi = 1.

Clearly, this relation is satis�ed for all R̂g and L̂h. Therefore, every
S ∈ S is a�ne as a composition of a�ne maps.

6Actually the notion of a�nity is a little overtechnical in this context, since the func-
tions S ∈ S, extended on C(G)′ in the obvious way, are linear and in particular a�ne on
Q̂. However, we have introduced R̂g, L̂g as functions on Q̂, which is not a vector space,
so linearity is not de�ned and we must call them �a�ne�.
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• Every S ∈ S is continuous:

As mentioned above, we consider Q̂ as a subset of (C(G)′, τw∗), so the
topology on Q̂ is the relative w∗-topology. It is easy to see that R̂g
is continuous: Let (Ik)k∈K be a net in Q̂. Then Ik → 0 ⇒

[
ιf (Ik) =

Ik(f) → 0 ∀f ∈ C(G)
]
⇒
[
Ik(f(g ·)) = RgIk(f) → 0 ∀f ∈ C(G)

]
⇒

RgIk → 0. In the same way we see that L̂g is continuous for all g ∈ G.
Hence, every element in S is continuous as a composition of continuous
maps.

• The family S is noncontracting: 0 /∈ {S(I)− S(J)
∣∣S ∈ S} for all

I, J ∈ Q̂, I 6= J .
This is the only property which is non-trivial to verify and where
compactness of G �nally comes into play. Let I 6= J be arbitrary
elements in Q̂. Since every S ∈ S is injective, we certainly have
0 /∈ {S(I)− S(J)

∣∣S ∈ S} =: M . We show that M is already closed7:

By de�nition of S we haveM = {R̂gL̂h(I)−R̂gL̂h(J)
∣∣ g, h ∈ G}, soM

is the image ofG×G under the mapping (g, h) 7→ R̂gL̂h(I)−R̂gL̂h(J) ∈
C(G)′. Lemma 3.2 below implies that this map is continuous. Hence,
M is closed as the continuous image of a compact set in the Hausdor�
space C(G)′.

Lemma 3.2. Let G be a compact group, I ∈ Q̂ ⊂ C(G)′. Then

ρ : G×G→ (C(G)′, τw∗) : (g, h) 7→ R̂gL̂h(I)

is continuous.

Proof. We need to show that for all f ∈ C(G) the map (g, h) 7→ I( f(h · g) ) is
continuous8. Since I is continuous on C(G), it su�ces to show that (g, h) 7→
f(h · g) ∈ C(G) is continuous for all f ∈ C(G). Fix f ∈ C(G). We have to
show that for all g, h ∈ G, ε > 0 there exist Ug ∈ U(g), Uh ∈ U(h) such that
|f(h̃xg̃) − f(hxg)| < ε for all g̃ ∈ Ug, h̃ ∈ Uh, x ∈ G. This is the case if, for
all ε > 0, there exists V ∈ U(e) such that, for all y ∈ G, |f(ỹ) − f(y)| < ε
for all ỹ ∈ V yV , where e is the unit element of G.9

This is precisely the assertion that f is uniformly continuous and the
proof is similar to that for functions on compact sets in R: Let ε > 0.
Because f is continuous, for all y ∈ G there exists Uy ∈ U(y) such that
|f(ỹ) − f(y)| < ε

2 for all ỹ ∈ Uy. Continuity of (x, z) 7→ xyz at (e, e)
implies that we can �nd Wy ∈ U(e) such that WyyWy ⊂ Uy. Again using

7Once again we emphasize that all topological notions refer to the w∗-topology on
C(G)′.

8To avoid misunderstandings, we remark that f(h · g) is the map G→ C : x 7→ f(hxg),
not f evaluated at hg.

9Indeed, given g, h ∈ G, ε > 0 and choosing V as in the second condition, this latter
condition tells us that, for all x ∈ G, |f(ỹ) − f(hxg)| < ε for all ỹ ∈ V hxgV . Setting
Uh = V h, Ug = gV , this implies the �rst condition.
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the continuity of (x, z) 7→ xz, there exists Vy ∈ U(0) such that V 2
y ⊂ Wy

and Vy ⊂ Wy. The set G is compact and (VyyVy)y∈G is an open cover.
Therefore, there exist y1, . . . , yn ∈ G such that G =

⋃n
i=1 VyiyiVyi . Set

V :=
⋂n
i=1 Vyi ∈ U(0). Let y ∈ G, ỹ ∈ V yV . Choose ` ∈ {1, . . . , n} with

y ∈ Vy`y`Vy` . Then y ∈ Uy` , ỹ ∈ V Vy`y`Vy`V ⊂Wy`y`Wy` ⊂ Uy` and hence

|f(ỹ)− f(y)| ≤ |f(ỹ)− f(y`)|+ |f(y`)− f(y)| < ε.

Conclusion

To summarize, we have shown that S is a noncontracting semigroup of con-
tinuous a�ne maps on a nonempty compact convex subset, Q̂, of the locally
convex topological vector space (C(G)′, τw∗) into itself. The Ryll-Nardzweski
�xed point theorem implies that there exists a �xed point Iµ ∈ Q̂ of S and,
as discussed above, the corresponding measure µ is a Haar measure for G.

Remark. If G is a non-compact locally compact group, the above argument
does not work. We can de�ne Q and F as above and, using Riesz' repre-
sentation theorem for positive linear functionals on C0(G), we can regard
Q as a subset Q̂ of C0(G)′. However, the condition µ(G) = 1, which
translates to ‖Iµ‖ = 1, now cannot be stated in terms of evaluation at
1 ∈ C(G)\C0(G) because Iµ is only de�ned on C0(G). Thus, the set

Q̂ = U1(0) ∩ ∂U1(0) ∩
⋂
f≥0 ι

−1
f (R+

0 ) need not be (w∗-)compact because
∂U1(0) may not be (w∗-)closed. For instance, if G = R, the functionals
In :=

∫
[n,n+1] · dλ, n ∈ N belong to Q̂, but for all f ∈ C0(G) we have

Inf → 0 and therefore In
w∗→ 0 /∈ Q̂.

Indeed, for G = R, the set Q cannot contain a �xed point of F at all, because
every Haar measure on R is unbounded.10

One might hope to meet the conditions by choosing an alternative de�ni-
tion of Q, e.g. by �xing a compact neighborhoodK of e and taking all Radon
measures µ that satisfy µ(gK) = 1 or µ(Kg) = 1 for some g ∈ G. However,
such an attempt fails � it must, because there are locally compact groups
with a left Haar measure that is not right-invariant. For the de�nition of Q
just given the problem is that S need not be noncontracting on Q.

In Section 5.1 we will brie�y explain how a di�erent �xed point theorem,
the Markov-Kakutani �xed point theorem, which avoids the requirement
that the family of functions be noncontracting, can be used to establish the
existence of Haar measure on locally compact abelian groups.

10Let µ be a Haar measure on R. Since µ is inner regular and µ(R) > 0, there exists
N ∈ N such that µ([−N,N ]) > 0. Because R contains an in�nite number of disjoint sets of
the form a+ [−N,N ], a ∈ R, and since µ is translation invariant, we conclude µ(R) =∞.
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4 Uniqueness

We supply the short proof that the Haar measure on a compact group G,
which exists according to the previous section, is unique. Let µ, ν be Haar
measures on G. Then for all f ∈ C(G)

Iµf =

∫
fdµ =

∫ ∫
f(g)dµ(g)dν(h) =

=

∫ ∫
f(hg)dµ(g)dν(h) =

∫ ∫
f(hg)dν(h)dµ(g) =

=

∫ ∫
f(h)dν(h)dµ(g) =

∫
fdν = Iνf,

so µ = ν. In going from the �rst to the second line we used the right-
invariance of µ and the equality in the second line holds because of Fubini's
theorem (which can be applied because µ and ν are �nite and f is bounded
on G). To establish the third line we used the left-invariance of ν.

For general locally compact groups uniqueness holds in the sense that
two left Haar measures may only di�er by a positive multiplicative constant:
µ = cν, c ∈ R+. However, the proof of this is more involved. [Fei09]

In Section 2 we already mentioned that a left Haar measure on a compact
group is automatically a Haar measure. This is another consequence of
the calculation above, where we only used the invariance of µ under left
translation. Therefore, if µ is a left Haar measure and ν is the Haar measure
for G, the calculation above implies µ = ν, so µ is Haar measure.

5 The Ryll-Nardzewski �xed point theorem

The following theorem, due to C. Ryll-Nardzewski, is the main result used
in our proof of existence of Haar measure on a compact group (Section 3):

Theorem 5.1 (Ryll-Nardzewski). Let K be a nonempty compact convex

subset of a locally convex topological vector space X and let S be a noncon-

tracting semigroup of continuous a�ne functions of K into itself. Then S
has a �xed point in K.

Recall that the property of S being noncontracting means that

0 /∈ {S(x)− S(y)
∣∣S ∈ S},

if x and y are di�erent points in K.
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Remark. The original version of the theorem, as stated by Ryll-Nardzewski
in [RN67], is more general and requires compactness of K and continuity of
the functions in S only with respect to the weak topology onX. The noncon-
tracting property remains formulated with respect to the original topology
on X, so altogether the statement is stronger and not, as one might believe
at �rst glance, the same theorem for the space (X, τw) instead of X with its
original (locally convex) topology. Since we do not need the theorem in its
full generality, we shall only prove the simpli�ed version, Theorem 5.1. The
interested reader is referred to [Con85] for a (not too complicated) proof of
Ryll-Nardzewski's original theorem.

Our proof of Theorem 5.1, which is based on the one in [Con85], requires
two major results from functional analysis that are very interesting in their
own right. The �rst is the Markov-Kakutani �xed point theorem, pre-
sented in Section 5.1, which is a �xed point theorem for commuting families
of continuous a�ne functions on compact convex subsets of (not necessarily
locally convex) topological vector spaces. The proof, although by no means
trivial, only requires elementary properties of topological (vector) spaces.
The second fundamental result used to prove Theorem 5.1 is the Krein-
Milman theorem whose proof is, in essence, a clever combination of the
Hahn-Banach theorem (hence the requirement of local convexity) and Zorn's
lemma. It states that a compact convex set K in a locally convex topological
vector space is in a sense �generated� by its extremal points: K = coE(K).
Since the content of the theorem is very well-known and intuitively quite �be-
lievable�, we present it in a separate section after the proof of Theorem 5.1.

5.1 The Markov-Kakutani �xed point theorem

Theorem 5.2 (Markov-Kakutani). Let K be a nonempty compact convex

subset of a topological vector space X and let S be a commuting set of con-

tinuous a�ne functions of K into itself. Then S has a �xed point in K.

Proof. [Con85] For S ∈ S, n ∈ N, we de�ne

S(n) :=
I + S + · · ·+ Sn−1

n

and T := {S(n)
∣∣n ∈ N, S ∈ S}. Because K is convex it is invariant under

all T ∈ T : T (K) ⊂ K. Therefore, K := {T (K)
∣∣T ∈ T } is a family of

closed subsets of K. We show that it has the �nite intersection property:
Let T1, . . . , TN ∈ T , N ∈ N. Note that the maps Ti commute, so

T1 · · ·TN (K) = TnT1 · · ·Tn−1Tn+1 · · ·TN (K) ⊂ Tn(K).

Therefore, ∅ 6= T1 · · ·TN (K) ⊂
⋂N
n=1 Tn(K) and K has the �nite intersection

property. Because K is compact, this implies the existence of an element

9



x0 ∈
⋂
T∈T T (K).

We show that x0 is a �xed point of S: Let S ∈ S, n ∈ N. The previous
result implies that there exists x ∈ K such that x0 = S(n)(x). Therefore,

S(x0)− x0 = S(n+1)(x)− S(n)(x) =

=
S + S2 + · · ·+ Sn

n
(x)− I + S + · · ·+ Sn−1

n
(x) =

=
Sn(x)− x

n
∈ 1

n
(K −K).

The setK−K is compact and in particular bounded, so for any neighborhood
U ∈ U(0) there exists n ∈ N such that U ⊃ 1

n(K −K) 3 S(x0) − x0. Since
X is Hausdor� this can only be the case if S(x0) = x0.

In particular, every continuous a�ne function on a compact convex sub-
set of a topological vector space has a �xed point.

Remark. The Markov-Kakutani �xed point theorem can be used to prove
the existence of Haar measure on locally compact abelian groups, see [Izz92]
for details. The idea is to consider a family F of translations Rg (= Lg for
an abelian group), g ∈ G, de�ned in the same way as in Section 3 but on a
di�erent set Q of �Haar measure candidates�:

Q = {µ Radon measure
∣∣ ∀g ∈ G : µ(gN) ≤ 1 ≤ µ(gN2)},

where N is an arbitrary open symmetric neighborhood of e with compact
closure. Using Riesz' theorem for positive linear functionals on Cc(G), we
can identify Q with a subset Q̂ of C∗c (G), which is a topological vector space
when equipped with the w∗-topology. In the de�nition of Q above, the �rst
�≤� ensures that Q̂ is compact in (C∗c (G), τw∗), while the second guarantees
0 /∈ Q̂ without destroying compactness. The details, as well as a proof that
Q 6= ∅, can be found in [Izz92]. In summary, the set Q̂ is nonempty, convex
and compact in (C∗c (G), τw∗).

The family F of translations, viewed as a family F̂ of functions on C∗c (G),
is commuting and all of its elements are a�ne and continuous on Q̂. There-
fore, the Markov-Kakutani theorem implies that there is a point Iµ ∈ Q̂ that
is �xed under all translations in F̂ , so G has a Haar measure.

5.2 Proof of the Ryll-Nardzewski �xed point theorem

We make use of the following simple lemma:

Lemma 5.3. Let X be a vector space, K ⊂ X, x ∈ K. Let S1, . . . , Sn be

functions from K into X. If

S0(x) :=
S1 + · · ·+ Sn

n
(x) = x
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and m ∈ {1, . . . n− 1} such that

S1(x) = x, . . . , Sm(x) = x

Sm+1(x) 6= x, . . . , Sn(x) 6= x

then

S′0(x) :=
Sm+1 + · · ·+ Sn

n−m
(x) = x.

Proof. The proof is a simple calculation:

x = S0(x) =
mx+ Sm+1(x) + . . .+ Sn(x)

n
(x) =

=
m

n
x+

n−m
n

S′0(x).

Solving for S′0(x) yields S′0(x) = x.

For the reader unfamiliar with the Krein-Milman theorem we summarize
the results of Section 6 that we need for the proof of the Ryll-Nardzewski
�xed point theorem in the following lemma:

Lemma 5.4. Let X be a locally convex topological vector space. Let K be

a compact convex subset of X and let M be a nonempty subset of K. Then

there exists y ∈ M with the following property: If y1, . . . , yn are arbitrary

elements in M such that

y =
y1 + · · ·+ yn

n

then

y = y1 = · · · = yn.

Proof. The lemma is a trivial consequence of the Krein-Milman theorem and
its inversion: Let L = coM . Clearly, L is nonempty, compact and convex.
By the Krein-Milman theorem E(L) 6= ∅ and by Theorem 6.4 E(L) ⊂M . So
M∩E(L) 6= ∅ and any element y of this set has the above stated property.

We are �nally ready to prove the Ryll-Nardzewski �xed point theorem:

Proof of Theorem 5.1. It su�ces to show that for every �nite number of
functions S1, . . . , Sn ∈ S there exists a common �xed point. Indeed, if this is
the case, the family ({x ∈ K

∣∣S(x) = x})S∈S of closed subsets of K has the
�nite intersection property and hence

⋂
S∈S{x ∈ K

∣∣S(x) = x} 6= ∅ because
K is compact.

11



Let S1, . . . , Sn ∈ S. According to the Markov-Kakutani theorem the
function

S0 :=
S1 + · · ·+ Sn

n

has a �xed point x0 ∈ K: S0(x0) = x0. We prove by contradiction that x0
is also a �xed point of S1, . . . , Sn. If Si(x0) 6= x0 for some i ∈ {1, . . . , n},
the previous lemma tells us that we can assume Sj(x0) 6= x0 for all j ∈
{1, . . . , n}. (Simply take the function denoted S′0 in the lemma instead of
S0.)

With this assumption let S̃ be the semigroup generated by {S1, . . . , Sn}
and let M ⊂ K be the set of images of x0 under functions in S̃:

M := {S(x0)
∣∣S ∈ S̃}.

We use Lemma 5.4 and �nd y ∈ M with the property stated in the lemma.
Let (Ti)i∈I be a net in S̃ with Ti(x0)→ y. Using x0 = S0(x0)

y = lim
i∈I

Ti(x0) = lim
i∈I

TiS1(x0) + · · ·+ TiSn(x0)

n
. (1)

The nets (TiS`(x0))i∈I , ` = 1, . . . , n, all lie in M . Using the compactness of
M we �nd a subnet (Uj)j∈J of (Ti)i∈I such that the nets (UjS`(x0))j∈J , ` =
1, . . . , n, converge. Let

y` := lim
j∈J

UjS`(x0) ∈M, ` = 1, . . . , n.

By equation (1), y = 1
n(y1 + · · · + yn), so our choice of y implies y = y1 =

y2 = · · · = yn. In particular,

0 = y1 − y = lim
j∈J

(UjS1(x0)− Uj(x0))

and therefore
0 ∈ {S(S1(x0))− S(x0)

∣∣S ∈ S}.
Since S1(x0) 6= x0 this contradicts the fact that S is noncontracting.

6 The Krein-Milman theorem

In the proof of the Ryll-Nardzewski theorem, we derived a contradiction by
constructing a non-empty compact subset M of a locally convex topological
vector space X with the property that every element of M could be written
as a convex combination of other elements of M . At least for X = C it is
intuitively (and also mathematically) clear that such a set cannot exist: If
K ⊂ C is closed and bounded, we can take the smallest disk D containing

12



K and no element of K ∩ ∂D (which is nonempty) can lie on an open line
segment whose endpoints are in K.

In Lemma 5.4 we presented a proof of the general case based on two fun-
damental theorems of functional analysis: the Krein-Milman theorem and
its inversion. It is the aim of this section to prove these two theorems.

To avoid the clumsy expression of �points that cannot be written as
a convex combination of other points� used above, we make the following
de�nition:

De�nition (Extremal point). Let X be a vector space, K ⊂ X. We say
that x ∈ K is an extremal point of K if it cannot be written as a proper
convex combination of elements in K\{x}. In other words,

x = λx1 + (1− λ)x2, λ ∈ (0, 1), x1, x2 ∈ K

implies x1 = x2 = x. The set of extremal points of K is denoted E(K).

For instance, if K ⊂ C is a convex polygon E(K) is the set of its corners.
If K is a closed disk E(K) = ∂K. For these simple examples, it also holds
that the entire set K can be reconstructed from its extremal points by taking
their convex hull: K = coE(K). The Krein-Milman theorem, which is the
�rst of the two theorems we will prove in this section, generalizes this result
to closed convex subsets K of arbitrary locally convex topological vector
spaces: K = coE(K). Note that the relation would not hold if we did not
take the closure of coE(K), as there exist closed convex sets K for which
coE(K) is not closed (see [Con85] for an example).

The second theorem that we shall prove, Milman's inversion, states that
every closed set A satisfying K = coA must contain E(K). In other words,
E(K) is the smallest closed set from which we can �build� K by taking the
closed convex hull.

We now turn to the proof of the theorems and a few useful lemmas.

Lemma 6.1. Let X be a topological vector space and let U ⊂ X be convex.

Then, for �xed u ∈ U, λ ∈ (0, 1), the set

W := {x ∈ X
∣∣λu+ (1− λ)x ∈ U}

is convex and contains U .

Proof. Clearly, W is convex and contains U . To show that U ⊂ W , let
x ∈ U\U and let S be the line segment connecting x and u, S := co {x, u}.
The function

f : [0, 1]→ S : µ 7→ µu+ (1− µ)x

13



is a homeomorphism and f(0) = x, f(1) = u. Because U and S are connected
with nonempty intersection, S ∩ U is connected, so I := f−1(S ∩ U) must
be an interval. Since 1 ∈ I, 0 ∈ I, the only possibilities for I are

I = (0, 1] or I = [0, 1].

In either case, (0, 1) ⊂ f−1(S ∩ U), so f(λ) ∈ S ∩ U ⊂ U , which is what we
wanted to show.

Theorem 6.2 (Krein-Milman). Let X be a locally convex topological vector

space and let K be a nonempty compact convex subset of X. Then K is the

closed convex hull of its extremal points:

K = coE(K).

Proof. [Con85] Clearly K ⊃ coE(K). By contradiction we show that K ⊂
coE(K). If there exists x0 ∈ K\coE(K), we can use the Hahn-Banach
theorem to �nd a functional f ∈ X ′ and γ ∈ R such that

Ref(x0) < γ < Ref(coE(K)).

So V := {x ∈ K
∣∣Ref(x) > γ} is a proper open11 convex subset of K

that contains E(K). We show that such a set cannot exist by looking at
the maximal elements of the familyM of proper open convex subsets of K
which contain V :

M := {W ⊂ K
∣∣W is a proper open convex subset of K and V ⊂W}.

The familyM, partially ordered by set inclusion, satis�es the conditions of
Zorn's lemma: It is nonempty and given a totally ordered subsetN ⊂M, the
union

⋃
N∈N N ∈M is an upper bound for N . Note that

⋃
N∈N N is indeed

a proper subset of K because K is compact and therefore, if
⋃
N∈N N = K,

we could �nd N1, . . . , Nn ∈ N such that K =
⋃n
i=1Ni. Since N is totally

ordered this would imply Nj = K for some j ∈ {1, . . . , n}, contradicting the
fact that Nj is proper.

So there indeed exist maximal elements of M. Let U be one of them.
We show that K\U is a singleton. By de�nition of M, K\U 6= ∅. If there
exist two di�erent points a, b ∈ K\U , we can �nd relatively open convex
neighborhoods Ua, Ub ⊂ K of a respectively b such that Ua∩Ub = ∅. Clearly,
Ua∪U is open inK and proper. Moreover, Ua∪U is convex, which can be seen

11If we say that a set V is an open subset of K we mean that V is a subset of K that
is open with respect to the relative topology on K.
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as follows: Let λ ∈ (0, 1), u ∈ U . We have to show that λu+(1−λ)x ∈ Ua∪U
for all x ∈ Ua. In other words, Ua ∪ U ⊂W , where W is the set

W := {x ∈ K
∣∣λu+ (1− λ)x ∈ U}.

Clearly, W is open in K. From Lemma 6.1 it follows that W is convex and
U ⊂ W . Since K is connected, we have U 6= U , so W is a proper superset
of U . Because U is maximal inM, this can only be the case if W = K. In
particular, Ua ∪ U ⊂W .

Hence, Ua ∪ U is a proper open convex subset of K, which is also a
proper superset of U since a /∈ U , a contradiction. We conclude that K\U
is a singleton. The point p ∈ K\U must be an extremal point of K, since
otherwise it could be written as p = µx+ (1− µ)y with µ ∈ (0, 1), x1, x2 ∈
K\{p}, contradicting the convexity of U . Therefore, U does not contain all
extremal points of K and since V ⊂ U the set V cannot either, contradicting
the de�nition of V .

We now turn to the Milman inversion of the Krein-Milman theorem.

Lemma 6.3. Let K1, . . . ,Kn be compact convex subsets of a topological vec-

tor space X. Then

co (K1 ∪ · · · ∪Kn) = co (K1 ∪ · · · ∪Kn).

Proof. We only need to show this for the case n = 2, the general result
follows by induction. Clearly, K := co (K1 ∪ K2) is closed if we can show
that

K = {λx+ (1− λ)y
∣∣λ ∈ [0, 1], x ∈ K1, y ∈ K2}, (2)

because then K is the image of the compact set [0, 1]×K1 ×K2 under the
continuous function

f : [0, 1]×K1 ×K2 → S : λ 7→ λx+ (1− λ)y.

To prove (2), note that the set on the right hand side is contained in every
convex superset of K1 ∪K2. Therefore, if we can show that it is convex, it
is the smallest convex set containing K1 ∪K2. Let z1 := λ1x1 + (1 − λ1)y1
and z2 := λ2x2 + (1− λ2)y2 where λi ∈ [0, 1], xi ∈ K1, yi ∈ K2 for i ∈ {1, 2}.
Then, for µ ∈ [0, 1],

µz1 + (1− µ)z2 = λx+ (1− λ)y,

where

λ = µλ1 + (1− µ)λ2 ∈ [0, 1]

x =
µλ1
λ
x1 + (1− µλ1

λ
)x2 ∈ K1

y =
µ(1− λ1)

1− λ
y1 + (1− µ(1− λ1)

1− λ
)y2 ∈ K2.
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Hence, µz1 + (1− µ)z2 ∈ {λx+ (1− λ)y
∣∣λ ∈ [0, 1], x ∈ K1, y ∈ K2}.

Theorem 6.4 (Milman inversion). Let X be a locally convex topological

vector space and let K be a nonempty compact convex subset of X. Let

F ⊂ K be such that

K = coF.

Then E(K) ⊂ F .

Proof. [Con85] Clearly it can be assumed that F is closed and K 6= F . Let
x0 ∈ K\F . We show that there exist compact convex sets K1, . . . ,Kn ⊂ K
such that

F ⊂ K1 ∪ · · · ∪Kn and x0 /∈ K1 ∪ · · · ∪Kn. (3)

This implies that x0 is not an extremal point of K, because using Lemma 6.3
above and the �rst property in (3)

K = coF = co (K1 ∪ · · · ∪Kn),

so x0 ∈ K can be expressed as a proper convex combination of elements of
K. Since x0 ∈ K\F was arbitrary, K\F ⊂ K\E(K).

To see that compact convex sets K1, . . . ,Kn with property (3) exist, let
U be an open convex neighborhood of 0 that separates x0 from F in the
following manner:

(x0 + U) ∩ (F + U) = ∅.

In particular, x0 /∈ F + U . Because F is compact, we can �nd n ∈ N, y1, . . . , yn ∈
F such that

F ⊂
n⋃
i=1

(yi + U).

Set Ki := co (F ∩ (yi +U)), i ∈ {1, . . . , n}. Clearly, the sets Ki are compact
and convex and F ⊂

⋃n
i=1Ki. Moreover, if there existed j ∈ {1, . . . , n} such

that x0 ∈ Kj , this would imply x0 ∈ co (yj + U) ⊂ F + U , a contradiction.
Therefore, the sets Ki have the properties we required.

Remark. The results above are very much in line with intuitive expectations,
but this is only so because the conditions have been adapted accordingly.
Unexpected things can happen if one of the conditions is dropped. For
instance, the closed unit ball in a normed vector space, which one would
consider a very �simple� convex set, need not have any extremal points at
all. This is for instance the case in the space L1([0, 1], λ) with the usual
‖ · ‖1-norm. It may also have far too few for U1(0) = coE(U1(0)) to hold,
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which is the case in C[0, 1], where E(U1(0)) = {−1, 1}, so clearly U1(0) 6=
coE(U1(0)).

These two examples do not contradict our general results, because the
condition of compactness is not satis�ed � at least not with respect to
the usual (norm) topology. Indeed, the Krein-Milman theorem implies that
U1(0) ⊂ L1(0, 1) (resp. ⊂ C[0, 1]) cannot be compact with respect to any

topology that makes L1(0, 1) (resp. C[0, 1]) a locally convex topological
vector space. In particular, L1(0, 1) (resp. C[0, 1]) cannot be isomorphic (in
the category of topological vector spaces) to the dual of a normed vector
space. Hence, an immediate corollary of the Krein-Milman theorem is that
the usual identi�cation of Lp(0, 1)′ and Lq(0, 1) for 1 ≤ p < ∞, 1p + 1

q = 1,
cannot be extended to the case p =∞, q = 1.
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