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Summary

This work is concerned with the computation of eigenvalues and eigenfunctions of singu-
lar eigenvalue problems (EVPs) arising in ordinary differential equations.
Two different numerical methods to determine values for the eigenparameter such that
the boundary value problem has nontrivial solutions are considered.
The first approach incorporates a collocation method. In the course of this work the ex-
isting code bvpsuite designed for the solution of boundary value problems was extended
by a module for the computation of eigenvalues and eigenfunctions.
The second solution approach represents a matrix method.
A code for first order problems is realized in such a way that problems of higher order
can also be solved after a transformation to the first order formulation.
Since many eigenvalue problems are of second order, for example Sturm-Liouville prob-
lems, we also implemented a code for second order problems and present an empirical
error analysis.
For the solution of semi-infinite interval problems a transformation of the independent
variable is carried out in such a way that the boundary value problem (BVP) originally
posed on a semi-infinite interval is reduced to a singular problem posed on a finite inter-
val. The implementation of this transformation is also incorporated into the bvpsuite

package.
The time-independent Schrödinger equation serves as an illustrating example.
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Chapter 1

Introduction

The study of eigenvalue problems (EVPs) for singular boundary value problems (BVPs)
is a topic of great interest. In many cases eigenvalue problems model important physical
processes. For example, the bound state energies of the hydrogen atom can be computed
as the eigenvalues of a singular eigenvalue problem. Very often those problems arise due
to the use of the method of separation of variables for the solution of classical partial
differential equations.
This subclass of boundary value problems also occurs as a model of motion according to
Newton’s law.
In the course of this work some of these examples are introduced to support the theoretical
results.

1.1 Mathematical Notation

By R
n we denote the space of real vectors of dimension n. | · | is the maximum norm and

|| · ||2 is the Euclidean norm in R
n.

Let z : (a, b) → R
n, then by Cp

n(a, b) we denote the space of real vector-valued functions
which are p times continuously differentiable on (a, b).
For functions z ∈ C0

n[0, 1] the maximum norm is denoted by ‖ · ‖∞.
Thus we define,

|z(t)| := max
1≤k≤n

|zk(t)|, t ∈ [0, 1]

and
‖z‖∞ := max

0≤t≤1
|z(t)|.

For the numerical analysis we define meshes of the form

∆ := (t0, t1, . . . , tN ), (1.1)

and
hk := tk − tk−1, k = 1, . . . , N, h := max

1≤k≤N
hk, t0 = a, tN = b. (1.2)

1



1 Introduction

Vectors (z0, . . . , zN ) ∈ R
(N+1)n corresponding to the grid ∆ are called grid vectors. In

the following we will restrict ourselves to equidistant meshes,

hk ≡ h, k = 1, . . . ,N. (1.3)

In this case we denote the vectors by

zh := (z0, . . . , zN ). (1.4)

The maximum norm on the space of grid vectors is given by

‖zh‖∆ := max
0≤k≤N

|zk|. (1.5)

For a continuous function z ∈ Cn[0, 1], we denote by R∆ the pointwise projection onto
the space of grid vectors,

R∆ :

{
Cn[0, 1] → R

(N+1)n

z 7→ (z(t0), . . . , z(tN )).
(1.6)

For collocation, m points tk + hkρj , j = 1, . . . ,m, are inserted in each subinterval Jk :=
[tk, tk+1], where 0 =: ρ0 < ρ1 < ρ2 < · · · < ρm < ρm+1 := 1.
This yields the grid

∆m := {tkj : tkj = tk + hkρj , k = 0, . . . , N − 1, j = 0, . . . ,m+ 1} . (1.7)

The assumption ρ1 > 0 avoids a special treatment of the left endpoint in case of a singular
problem.

t0 . . . tk

. . . tkj . . .

tk+1 . . . tN

ρjhk
︷︸︸︷

︸ ︷︷ ︸

hk

Figure 1.1: The computational grid

1.2 Outline of the Work

In Chapter 1 the mathematical framework that we deal is established.
In Chapter 2 we give the problem formulation of the (singular) eigenvalue problem and
introduce the important subclass of Sturm-Liouville problems (SLPs). Furthermore, we
consider the time-independent Schrödinger equation and show how singular eigenvalue
problems arise by applying the method of separation of variables. Analytical results on
the eigenvalues and eigenfunctions for the hydrogen problem are recapitulated.
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1.2 Outline of the Work

Then, we present some existing codes for the solution of eigenvalue problems and describe
briefly the numerical methods used. In Chapter 3 a transformation of the independent
variable for BVPs posed on semi-infinite intervals including the special case of eigenvalue
problems is carried out. This is done in such a way that the problem originally posed
on a semi-infinite interval is transformed to a problem posed on a finite interval. Subse-
quently, the collocation code bvpsuite can be used.
Motivated by the way parameter dependent problems are treated in [18], a collocation
method for the solution of eigenvalue problems for boundary value problems is presented.
For regular problems this is described in [1] and for details related to the singular problem,
see [2]. The calculation of the eigenvalues and eigenfunctions of the time-independent
Schrödinger equation illustrates the technique. Since the exact solution is known, ab-
solute and relative errors for the eigenvalues are presented in Chapter 4. Furthermore,
empirical convergence orders are calculated.
In Chapter 5, a second approach for the numerical calculation of eigenfunctions and
eigenvalues is presented. This method incorporates a finite difference approximation. By
applying Keller’s box scheme we replace the original problem by an algebraic eigenvalue
problem which can be solved by standard linear algebra packages.
A code for first order problems was implemented in such a way that problems for higher
order differential operators can also be solved after transformation to the first order form.
Since many eigenvalue problems are of second order, for example Sturm-Liouville prob-
lems, we also implemented a code for second order problems and paid special attention
to the approximation of the boundary conditions in the singular case. Also for these
methods numerical examples are given and empirical convergence orders are presented.
Finally, after analyzing the pros and cons of the two presented numerical methods for
the solution of differential eigenvalue problems we conclude that the combination of both
techniques results in a very successful and efficient approach. Since for the collocation
method a good starting profile is crucial in order to home in on the eigenvalue λk for a
specified index k, we made use of the matrix method to obtain an accurate starting guess
for the eigenvalue as well as an initial profile for the eigenfunction subsequently computed
on an adaptive mesh by the collocation method featuring error control. This combined
technique proved to be highly successful when applied to three relevant examples from
quantum mechanics.

3





Chapter 2

Eigenvalue Problems for Ordinary

Differential Equations

Eigenvalue problems for ordinary differential equations may be stated in various formu-
lations much in the way of ‘standard’ boundary value problems. In the linear case, for
example, an eigenvalue problem for a homogeneous differential operator L is to determine
eigenvalues λ ∈ C for which the BVP,

Ly = λy, (2.1)

Bay(a) +Bby(b) = 0, (2.2)

has nontrivial solutions, which are called eigenfunctions. The problem is called singular if
L denotes a singular differential operator, cf. Chapter 4. One imporant class of eigenvalue
problems are Sturm-Liouville problems, where L is of second order and self-adjoint. For
those a well-developed theory and various codes for the computation of the numerical
solution exist.
However, our aim was not only to focus on SLPs but to consider numerical methods,
which are capable of solving a wide range of differential eigenvalue problems including
higher order examples. In the course of this report we will also investigate examples of
coupled channel Schrödinger equations whose mathematical statement corresponds to an
EVP for a system of ODEs. These arise in the context of Hamiltonian systems, cf. [23].

2.1 Sturm-Liouville Problems

Sturm-Liouville problems [27] are linear differential eigenvalue problems of the form

− d

dt

(

p(t)
dy(t)

dt

)

+ q(t)y(t) = λg(t)y(t) (2.3)

posed on an interval (a, b) which may be finite or infinite, −∞ ≤ a < b ≤ ∞.
In [27] a Sturm-Liouville problem is called regular if

• a and b are finite,
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2 Eigenvalue Problems for Ordinary Differential Equations

• p, q and g are defined on [a, b] and continuous except for finitely many jumps,

• p and g are strictly positive almost everywhere and

• regular boundary conditions are posed.

We will later state the assumptions on the problem data necessary to obtain a well-posed
problem in the singular case.
A pair consisting of a value of λ for which there is a nontrivial solution y(t) of (2.3) and
the solution itself is called eigensolution.
Our aim is to calculate such pairs numerically. Depending on the problem, sometimes a
large number of such pairs is sought. Consequently, this influences the numerical method
that is used to solve the given problem. If only a few eigenvalues and eigenfunctions are
sought, a possible way to solve this problem is to recast the Sturm-Liouville problem into
the framework of boundary value problems as it is done in Chapter 4.
Typically, Sturm-Liouville problems arise in the context of the separation of variables
method for partial differential equations, as it is also the case for the one-particle Schrö-
dinger equation. We then speak of q(t) as a potential function and the eigenvalue is
called energy level. The associated eigenfunction is called wave function. The eigenvalue-
eigenfunction pair is then referred to as bound state. Many physical phenomena, such
as vibration of strings and, as mentioned before, the interaction of atomic particles give
rise to Sturm-Liouville problems.
In general, we distinguish between regular and singular endpoints. We already classified
a regular problem. We call a problem singular if one or both of its endpoints are singular.
In [27] and related publications the following definition is given:

Definition 1. The endpoint a of I = [a, b] ⊆ R is regular if it is finite and

p−1, |q|, g ∈ L1[a, α] for some α ∈ (a, b).

Similarly the endpoint b is regular if it is finite and

p−1, |q|, g ∈ L1[β, b] for some β ∈ (a, b).

An endpoint is called singular if it is not regular. Thus an endpoint is singular if it
is infinite, or the endpoint is finite but at least one of p−1, q or g is not integrable in
any neighbourhood of the endpoint. Note that the assumptions for p and g to be strictly
positive almost everywhere still hold.

It is interesting to note that for p(t) = 1 and q(t) = t−α for α < 1 in the terminology
of Sturm-Liouville problems one still calls 0 a regular endpoint.
Additionally, a distinction of singular endpoints into limit-circle (LC) and limit-point
(LP) is made:

• Limit-Circle (LC)
The endpoint a is limit-circle (LC) if a is singular and all solutions of (2.3) are in
L2((a, α); g) for some α ∈ I.
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2.1 Sturm-Liouville Problems

• Limit-Point (LP)
The endpoint a is limit-point (LP) if a is singular and there is only one nonzero
solution in L2((a, α); g) for some α ∈ I.

A further classification into oscillatory and nonoscillatory is given by

• Nonoscillatory
The endpoint a is nonoscillatory (LCNO) if there exists a point d ∈ (a, b), and a
real value λ ∈ R such that a solution of (2.3) has no zero in (a, d).

• Oscillatory
The endpoint a is oscillatory (LCO) if for any real λ ∈ R and any nonzero solution
there exists a d ∈ (a, b] such that this solution has a zero ξ ∈ (a, d].

Although λ appears in the LP/LC-classification of the endpoint, in fact the classification
only depends on the interval (a, b) and the coefficient functions p, q and g.

The Spectrum of a Sturm-Liouville Operator

Regular problems only have a discrete spectrum, which consists of all the eigenvalues.
However singular problems can also have a continuous spectrum. Depending on the
problem, different results about the spectrum of the given differential operator hold.
For example, under certain assumptions on the coefficient functions and the boundary
conditions, the following theorem for regular problems can be shown, cf. [23].

Theorem 2.1. Consider the Sturm-Liouville problem with real coefficient functions and
separated boundary conditions

−(py′)′(t) + q(t)y(t) = λg(t)y(t), t ∈ (0, 1], (2.4)

a0y(0) + b0(py
′)(0) = 0, a1y(1) + b1(py

′)(1) = 0, (2.5)

a2
0 + b20 > 0, a2

1 + b21 > 0. Assume that p, g > 0 on (0, 1] and 1/p, q and g are continuous
functions satisfying 1/p, q, g ∈ L1[0, α) for some α > 0. Then

• The eigenvalues λk have algebraic multiplicity 1 and consequently the eigenspace
for each eigenvalue is of dimension 1.

• The eigenvalues λk can be ordered as an increasing sequence tending to infinity,

λ0 < λ1 < λ2 < . . . (2.6)

and the eigenfunction corresponding to λk has exactly k zeros on the open interval
(0, 1).

The spectrum of a singular problem is a closed infinite subset of the real line. Depend-
ing on the type of the endpoints, the spectrum can have different structures. The most
common are:
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2 Eigenvalue Problems for Ordinary Differential Equations

• The eigenvalues are an infinite sequence bounded from below and accumulate at
infinity.

• As the first case, but the eigenvalues accumulate at −∞ as well as ∞.

• An infinite sequence of eigenvalues, bounded from below, with one finite accumu-
lation point λc such that all λ ≥ λc are in the continuous spectrum σc.

• A finite, possibly empty, sequence of eigenvalues, which are bounded by λc and all
λ ≥ λc are in σc.

The discrete spectrum of the radial equation of the hydrogen problem, which we will
consider in more detail in the following chapters, is an infinite set λ0 < λ1 < . . . <
λn < . . . < λc = 0, such that lim

n→∞
λn = 0 and all λ ≥ 0 lie in the continuous spectrum.

The fact that the eigenvalues are all simple, makes this singular problem suitable for the
solution by the collocation method described in Chapter 4.

2.1.1 Example for a Sturm-Liouville Problem — The Hydrogen Atom

The Schrödinger operator of one particle in d dimensions is given by

Ĥ :

{

D
(

Ĥ
)

⊂ H → H
Ĥψ (x) = [−∆ + V (x)]ψ (x) ,

(2.7)

with the Hilbert space H = L2
(
R

d
)
. Function V : R

d → R denotes the potential acting
on the particle. Since in quantum physics the most important cases are d = 1, 2, 3 we
restrict ourselves to these values of d and in particular for the following calculations we
set d = 3.
Since we want to determine the discrete spectrum of Ĥ, we further consider the eigenvalue
problem

Ĥψ (x) = λψ (x) . (2.8)

In the context of an electron interacting with a nucleus, an eigenvalue is an energy at
which the electron orbits the nucleus stably for an infinite time. If the potential is
spherically symmetric, i.e. V (x) = V (|x|) = V (r), then the problem can be transformed
into three BVPs for ordinary differential equations. For this purpose the Cartesian
coordinates x = (x1, x2, x3) are replaced by spherical coordinates (r, θ, φ)

x1 = r sin(θ) cos(φ),
x2 = r sin(θ) sin(φ),
x3 = r cos(θ),

where r ∈ [0,∞), θ ∈ [0, π] , φ ∈ (−π, π]. Consequently, the operator Ĥ is transformed
to

Ĥ = − 1

r2
∂

∂r

(

r2
∂

∂r

)

− 1

r2
1

sin(θ)

∂

∂θ

(

sin(θ)
∂

∂θ

)

− 1

r2
1

sin2(θ)

∂2

∂φ2
+ V (r).
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2.1 Sturm-Liouville Problems

By separation of variables ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) we obtain
(

− 1

r2
d

dr

(

r2
d

dr

)

+
l(l + 1)

r2
+ V (r)

)

R(r) = λR(r), (2.9)

1

sin(θ)

(

− d

dθ

(

sin(θ)
d

dθ

)

+
m2

sin(θ)

)

Θ(θ) = l(l + 1)Θ(θ), (2.10)

− d2

dφ2
Φ(φ) = m2Φ(φ), (2.11)

where l ∈ N0 and m ∈ Z.
In the following we will restrict our attention to equation (2.9). Furthermore we carry
out a transformation of the dependent variable R(r) 7→ u(r) = rR(r). Hence, we obtain
a Sturm-Liouville problem where it holds that in (2.3) p(r) = g(r) = 1 and

q(r) = − l(l + 1)

r2
+
γ

r
, (2.12)

on [0,∞).

Exact Eigenvalues of the Hydrogen Atom

The hydrogen atom can be modeled by a single electron exposed to the external potential
V which is generated by the atom’s nucleus. V is called the Coulomb potential. Since
the electron is attracted by the nucleus in (2.13) below it holds that γ > 0. Note that
for γ ≤ 0 the discrete spectrum is empty.
Hence, in (2.7) we set the potential V (r) = γ

r and therefore the radial equation (2.9)
becomes (

− 1

r2
d

dr

(

r2
d

dr

)

+
l(l + 1)

r2
− γ

r

)

R(r) = λR(r). (2.13)

In [31] (2.9) – (2.11) are solved independently and the following theorem is stated.

Theorem 2.2. The eigenvalues of (2.7) are explicitly given by

λn = −
( γ

2n

)2
, n ∈ N. (2.14)

An orthonormal basis for the corresponding eigenspace is given by the n2 functions

ψn,l,m(x) = Rn,l(r)Y
m
l (x), |m| ≤ l < n, r = |x|, (2.15)

where

Rn,l(r) =

√

γ3(n− 1 − l)!

2n4(n+ l)!

(γr

n

)l
e−

γr
2 L

(2l+1)
n+l

(γr

n

)

, (2.16)

L
(2l+1)
n+l

(γr

n

)

=

n−l−1∑

i=0

(−1)i+2l+1

i!
(n+ l)!

(
n+ l

i+ 2l + 1

)(γr

n

)i
. (2.17)
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2 Eigenvalue Problems for Ordinary Differential Equations

Figure 2.1: Appearance of bound states of the hydrogen atom for various values of the
angular momentum quantum number l and the principal quantum number
n. n = 1 – violet, n = 2 – blue, n = 3 – green, n = 4 – red.

By L
(2l+1)
n+l we denote the generalized Laguerre polynomials and Y m

l (x) are the so-called

spherical harmonics. In particular, the lowest eigenvalue λ1 = −γ2

4 is simple and the

corresponding eigenfunction ψ100 =
√

γ3

2 e
− γr

2 is positive. The radial wave functions are
normalized such that

∫ ∞

0
r2Rn,l(r)Rn,l(r)dr = 1. (2.18)

From the theorem above one clearly sees that the eigenvalues are independent of the
choice of l. However, this does not hold for the eigenfunctions.
By using results for self-adjoint operators, cf. [31], one immediately can characterize the
spectra of each of the operators given in equations (2.9) – (2.11) for our particular poten-
tial. Figure 2.1 shows the dependence of the point spectrum on the angular momentum
quantum number l and the principal quantum number n.
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2.2 Standard Codes for the Solution of Eigenvalue Problems in ODEs

2.2 Standard Codes for the Solution of Eigenvalue Problems

in ODEs

SLEIGN2

An advanced solver for Sturm-Liouville eigenvalue problems is the well-known code
SLEIGN2. It is inspired by the older code SLEIGN by Bailey, Shampine and Gordon.
The code SLEIGN2 (Sturm-Liouville eigenvalue) was published by P.B. Bailey, W.N.
Everitt and A. Zettl [6]. It is a code designed for the solution of Sturm-Liouville bound-
ary value problems consisting of one ordinary second order linear differential equation

− d

dt

(

p(t)
dy(t)

dt

)

+ q(t)y(t) = λg(t)y(t) on (a, b) ⊆ R (2.19)

and associated self-adjoint separated or nonseparated boundary conditions.
The problem can either be singular or regular according to the definitions in Chapter 2.
In the singular case the code can also approximate the essential spectrum.
There is one problem type that the code cannot deal with, which is the case where one
endpoint is LP and the spectrum is discrete and unbounded in both directions.
The code SLEIGN2 [6] uses the so-called scaled Prüfer transformation to transform the
dependent variables,

y = S−1/2ρ sin(θ), py′ = S1/2ρ cos(θ). (2.20)

As a result the linear second order problem is transformed to a nonlinear first order
eigenvalue problem believed to be suitable for numerical integration. S is a strictly
positive scaling function. The equations for θ and ρ are

θ′ =
S

p
cos2(θ) +

λg − q

S
sin2(θ) +

S′

S
sin(θ) cos(θ), (2.21)

2ρ′

ρ
=

(
S

p
− λg − q

S

)

sin(2θ) − S′

S
cos(2θ). (2.22)

These equations are partially uncoupled such that we can first deal with equation (2.21).
This equation becomes stiff for λg − q ≪ 0. The numerical integration is realized by a
two-sided shooting procedure which is iteratively refined until a matching condition at
some suitable interior point is satisfied up to a tolerance. Quite intricate preprocessing
is used to prepare for the numerical integration of the initial value problem which is
then realized by a 4(5) explicit Runge-Kutta-Fehlberg integrator with local error control
called GERK. It is well-known that explicit Runge–Kutta methods are not well-suited
solvers for singular initial value problems [16] as well as for stiff problems.

SLEDGE

SLEDGE is another code to calculate eigenvalues and eigenfunctions of a Sturm-Liouville
problem. It was published by S. Pruess and C. Fulton [26]. The basic idea behind this

11



2 Eigenvalue Problems for Ordinary Differential Equations

approach is to replace the given equation (2.19) and boundary conditions

α1y(a) + α2(py
′)(a) = λ[α′

1y(a) − α′
2(py

′)(a)], (2.23)

β1y(b) + β2(py
′)(b) = 0, (2.24)

by an approximating problem

− (p̂ŷ′)′ + q̂ŷ = λ̂ĝŷ, (2.25)

with the boundary conditions

α1ŷ(a) − α2(p̂ŷ
′)(a) = λ̂[α′

1ŷ(a) − α′
2(p̂ŷ

′)(a)], (2.26)

β1ŷ(b) + β2(p̂ŷ
′)(b) = 0. (2.27)

Note that the boundary conditions may also depend on λ and λ̂, respectively, at one side.
The functions p̂, q̂ and ĝ are step functions on the mesh a = t1 < t2 < · · · < tN+1 = b
and the values on each subinterval (tn, tn+1) are defined by the midpoint value, i.e.

p̂(t) = pn := p

(
tn + tn+1

2

)

, t ∈ (tn, tn+1], (2.28)

and accordingly for the other two coefficient functions q and g.
Since

p̂′(t) = 0 ∀t ∈ (tn, tn+1] (2.29)

the approximating problem on (tn, tn+1) reduces to

− ŷ′′ = ω2
nŷ, (2.30)

with

ωn :=
√

|τn|, (2.31)

τn :=
λ̂gn − qn

pn
. (2.32)

Because of the simplified coefficient functions we immediately obtain the following exact
solution of (2.30)

ŷ(t) = ŷ(tn)φ′n(t− tn) +
(p̂ŷ′)(tn)

pn
φn(t− tn) (2.33)

with

φn(t) =







sin(ωnt)/ωn, τn > 0,
sinh(ωnt)/ωn, τn < 0,
t, τn = 0.

12



2.2 Standard Codes for the Solution of Eigenvalue Problems in ODEs

By requiring that ŷ satisfies the boundary conditions and setting hn = tn+1−tn, together
with (2.33) we obtain the recurrence

ŷ(t1) = α2 − α′
2λ̂, (2.34)

(p̂ŷ′)(t1) = α1 − α′
1λ̂, (2.35)

ŷ(tn+1) = ŷ(tn)φ′n(hn) +
(p̂ŷ′)(tn)

pn
φn(hn), (2.36)

(p̂ŷ′)(tn+1) = −τnpnŷ(tn)φ′n(hn) + (p̂ŷ′)(tn)φn(hn). (2.37)

In (2.37) the fact that φ′′n(t) = −τnφn(t) was used.
Roughly speaking, the code proceeds as follows: The values ŷ(tn+1) for n = 0, 1, . . . , N
are calculated and subsequently a shooting method is applied. The relationship that has
to be satisfied such that λ̂ is an eigenvalue of the approximating problem is

β1ŷ(tN+1) + β2(p̂ŷ
′)(tN+1) = 0. (2.38)

Therefore λ̂ has to be adjusted in order to find a zero of (2.38). This corresponds to
a one-sided shooting procedure. Only if eigenfunction approximations are sought, the
two-sided shooting algorithm is applied.
In order to separate the desired eigenvalue, say λn, from the rest of the point spectrum,
an interval [ξk, ηk] is determined such that this interval only contains λn. To find this
interval the code exploits the fact that the index of the desired eigenvalue corresponds to
the zeros of the eigenfunction. It is possible to count the zeros of the eigenfunction for
the current value of λ while shooting from a to b with a trial value for λn. This yields
appropriate values for ξk and ηk. The algorithm described above just gives the basic idea
which underlies SLEDGE. Refinements that need to be added such as to avoid numerical
instability are not explained here, see [26] for details.

SL02F

SL02F was published by M. Marletta and J. Pryce [24].
This routine approximates the given problem by replacing the coefficient functions with
piecewise constant approximations. The aim is to transform the second order problem
into a problem that is easy to solve on each subinterval (tn, tn+1). When the equation
is actually solved, the eigenparameter λ is fixed and the problem can be treated as an
ordinary differential equation. However, the difference to SLEDGE is that this code
transforms ŷ and p̂ŷ′ (defined as in Section 2.2) to scaled Prüfer’s variables [27]

p̂ŷ′ = S
1
2 ρ cos(θ), (2.39)

ŷ = S− 1
2 ρ sin(θ), (2.40)

13



2 Eigenvalue Problems for Ordinary Differential Equations

where the scaling factor S on each subinterval (tn, tn+1) has the positive constant value
Sn and solves the resulting equations

dθ

dt
=
Sn

pn
cos2(θ) +

λ̂gn − qn
Sn

sin2(θ), (2.41)

d log(ρ)

dt
=

{

Sn

pn
− λ̂gn − qn

Sn

}

sin(2θ), (2.42)

for t ∈ (tn, tn+1). The miss-distance to determine the two-sided shooting process reads:

D(λ) = θL(c) − θR(c), (2.43)

where θL(c) and θR(c) are the solutions that satisfy the left and right boundary conditions
and c is a suitable matching point. For the integration of (2.41), Sn is chosen such that
the differential equation becomes easy to solve. Hence, the code treats three different
cases, depending on the quantity

m = τnh
2, (2.44)

where τn is defined as in (2.32) and h = tn+1 − tn. In SL02F these three cases are

‘large positive’ m > TOL
‘large negative’ m < −TOL

‘small’ |m| ≤ TOL

TOL has to be smaller than π2 and is set to 0.1, cf. [27, pp. 125]. Here TOL does not
correspond to the prescribed tolerance of the shooting process. In all cases an explicit
solution can be given analytically. Then D(λ) has to tend to 0 in order to obtain an
approximation for the eigenvalue.
Note that only (2.41) was used to calculate the eigenvalues. For the eigenfunctions,
however, also (2.42) has to be integrated. For this purpose the same three cases are used
as described above. In this algorithm no numerical integration such as Runge-Kutta is
carried out. On each subinterval an ordinary differential equation is solved analytically.

SLEUTH

The code SLEUTH [12] is designed for the solution of fourth-order Sturm–Liouville prob-
lems with separated boundary conditions. It implements a shooting procedure to deter-
mine a single eigenvalue by replacing the given problem by one with piecewise constant
coefficients. The accuracy of the approximation is increased by Richardson extrapolation.

MATSLISE

The code MATSLISE [23] incorporates another shooting method for the solution of
Sturm-Liouville and Schrödinger equations. As in any other shooting procedure, ini-
tial value problems have to be solved repeatedly. The numerical methods which provide
the solution approximations of these IVPs are called Piecewise Perturbation Methods

14



2.2 Standard Codes for the Solution of Eigenvalue Problems in ODEs

(PPMs). Therefore, the coefficient functions of the differential equation are replaced
by piecewise polynomials and the resulting equation is referred to as reference equation.
The method is called Constant Perturbaton Method (CPM) if the coefficients are re-
placed by a piecewise constant function and analogously, it is called Line Perturbation
Method (LPM) if linear functions are used. Since the PPMs are designed for problems
in Sturm-Liouville normal form,

ỹ′′(t) = (V (t) + λ)ỹ(t), (2.45)

ỹ(a) = α, ỹ′(a) = β, (2.46)

general Sturm-Liouville problems (2.19) have to be transformed using Liouville’s trans-
formation, cf. [10]. For these reference equations an exact solution can be found.
In contrast to SL02F and SLEDGE, perturbation corrections according to perturbation
theory are added to the solution of the reference equation, to increase the accuracy.
Furthermore, a procedure similar to the one used by SLEDGE is carried out to determine
the index of the eigenvalue which is calculated.

The reference equation

The notion reference equation plays an important role in the context of PPMs. The
aim is to replace the coefficient functions in the given differential equations by functions
which are represented by polynomials on each subinterval of the underlying mesh. The
new equation is called reference equation. In case of the CPM the reference equation on
the subinterval [ti−1, ti] has the form

ỹ′′(δ) = (V̄ − λ)ỹ(δ), δ ∈ [0, hi], (2.47)

where δ = t − ti−1, hi = ti − ti−1 and V̄ is a real constant. Hence, the general solution
of this reference equation is given by

ỹ(δ) = c1 exp((V̄ − λ)1/2δ) + c2 exp(−(V̄ − λ)1/2δ), (2.48)

where c1 and c2 are free parameters.
In the following we call two linearly independent particular solutions, ū, v̄, of this ODE
reference propagators, if they satisfy the initial conditions ū(0) = 1, ū′(0) = 0 and
v̄(0) = 0, v̄′(0) = 1. They are called propagators because they propagate the solution
from ti−1 to ti, (

ỹ(ti)
ỹ′(ti)

)

=

(
ūi(h) v̄i(hi)
ū′i(h) v̄′i(hi)

)(
ỹ(ti−1)
ỹ′(ti−1)

)

, (2.49)

where hi = ti − ti−1 and ūi and v̄i are the propagators of the i-th subinterval [ti−1, ti].
In MATSLISE both the Constant Perturbation Method (CPM) and the Linear Pertur-
bation Method (LPM) are implemented.
Coming to the disadvantages of PPMs, we have to mention that the mesh which is used
for the numerical calculations is fixed during the whole shooting procedure (at least for
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regular problems).
The code also does not offer any possibilities to solve eigenvalue problems for systems of
ODEs and also only a limited class of singular problems is covered excluding oscillatory
endpoints.

MATSCS

This code was presented in [23] and is a generalization of the code MATSLISE. MATSCS
was developed for the solution of coupled channel Schrödinger equations

y′′(t) = (V (t) − EI)y(t), t ∈ [a, b], (2.50)

where I is the n× n unity matrix, V (t) is an n× n symmetric potential matrix which is
assumed to be well-behaved in t and y is a set of nsol ≤ n column vectors of dimension
n. Boundary conditions are typically given as

A0y(a) +B0y
′(a) = 0, (2.51)

A1y(b) +B1y
′(b) = 0, (2.52)

(2.53)

and satisfy the conjointness conditions

AT
0B0 −BT

0 A0 = 0, (2.54)

AT
1B1 −BT

1 A1 = 0, (2.55)

and the rank conditions

rank(A0|B0) = n, rank(A1|B1) = n. (2.56)

The aim is to solve (2.50) by using a CPM{P,N} approach as a propagation method in
a shooting procedure. The partition a = t0, t1, t2, . . . , tN = b is introduced. A transfer
matrix X, which propagates y and y′ block wise from one discretization interval to the
adjacent, has to be determined. By denoting the current one step interval by [T, T + h],
y and y′ are propagated by

[
y(T + h)
y′(T + h)

]

= X

[
y(T )
y′(T )

]

. (2.57)

The transfer matrix can be written as

X =

[
u(δ) v(δ)
u′(δ) v′(δ)

]

, (2.58)

where u(δ) and v(δ) are two particular solutions of

p′′ = (V (T + δ) − EI)p, δ ∈ [0, h], (2.59)
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2.2 Standard Codes for the Solution of Eigenvalue Problems in ODEs

satisfying the initial conditions p(0) = 1, p′(0) = 0 and p(0) = 0, p′(0) = 1, respectively.
The matrix V (T + δ) is an approximate potential matrix

V (T + δ) =
N∑

m=0

Vmh
mP̃m(δ/h),

where P̃m denote the shifted Legendre polynomials and the matrix weights Vm result
from quadrature. The symmetric matrix V0 is then diagonalized. It is then denoted as
the reference potential V D

0 and the rest of the sum denotes the perturbation.
The actual determination of an eigenvalue of (2.50) is done by a shooting procedure
where the miss-distance is given as the determinant

φ(E) =

∣
∣
∣
∣

YL YR

Y ′
L Y ′

R

∣
∣
∣
∣
. (2.60)

YR and YL are matrix solutions of (2.50) in a sense that each column of YR is a solution
and satisfies the right-hand boundary conditions and YL is defined correspondingly.
Moreover, a generalization of the Prüfer transformation which is defined for scalar prob-
lems makes the whole procedure more robust and allows the code to determine the
required eigenvalue by its index.
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Chapter 3

Problems Posed on Semi-Infinite

Intervals

Boundary value problems in general and eigenvalue problems in particular are very often
posed on semi-infinite intervals, see for example the equation for the hydrogen atom in
Chapter 2. While the common way of dealing with semi-infinite interval problems is
to truncate the interval, see for example [23], another way to solve such problems is to
transform them to a finite interval and subsequently apply a suitable numerical method.
Here, we present this transformation in a general manner.

3.1 Transformation of the Independent Variable

This chapter deals with problems of the form

f(t, z, z′, . . . , z(k)) = 0, a < t <∞, (3.1)

where a ≥ 0.
By a change of the independent variable, the problem posed on [a,∞), a ≥ 0 is trans-
formed to the interval [0, 1]. Intervals of the form [0,∞) are first split into (0, 1] and
[1,∞) and then the latter interval is transformed to (0, 1] via t 7→ 1/t. By applying
the transformation t 7→ a/t, intervals of the type [a,∞) where a > 0 can be directly
transformed to (0, 1].
To supply the user with the solution on the semi-infinite interval, a graphical back trans-
formation is carried out.
According to [8] and [19], our technique enables the efficient application of collocation
methods and classical convergence orders can be observed.
This transformation is not only valuable for eigenvalue problems but also for ‘standard’
boundary value problems posed on semi-infinite intervals. Therefore we present the tech-
nique in a more general setting.
Note that typically this transformation gives rise to essential singularities at 0, see Chap-
ter 4. Since our collocation solver is designed to solve singular problems, the transfor-

19



3 Problems Posed on Semi-Infinite Intervals

mation to a finite interval does not result in any further numerical difficulties. In the
following we assume that z(t) is sufficiently smooth.

• Transformation of a second order equation

To illustrate the technique, we consider a second order differential equation posed
on [1,∞). A second order differential equation in its most general form reads

f(t, z1(t), z
′
1(t), z

′′
1 (t), . . . , zn(t), z′n(t), z′′n(t)) = 0, t ∈ [1,∞). (3.2)

Applying the transformation from [9],

zi+n(t) := zi

(
1

t

)

, (3.3)

the problem can be transformed to the finite interval (0, 1]. Then we have

z′i+n(t) = − 1

t2
z′i

(
1

t

)

, (3.4)

(

z′i

(
1

t

))′
= − 1

t2
z′′i

(
1

t

)

. (3.5)

From (3.4) and (3.5) it follows that

z′′i

(
1

t

)

= (−t2)
(

z′i

(
1

t

))′

= (−t2)(−t2z′i+n(t))′. (3.6)

Inserting (3.6) into the equation

f

(
1

t
, z1

(
1

t

)

, z′1

(
1

t

)

, z′′1

(
1

t

)

, . . . , z′′n

(
1

t

))

= 0, (3.7)

yields the new problem formulation on (0, 1],

f

(
1

t
, zn+1(t),−t2z′n+1(t), (−t2)(−t2z′n+1(t))

′, . . . , (−t2)(−t2z′2n(t))′
)

= 0. (3.8)

• Transformation of a third order equation

We now transform

f(t, z1(t), . . . , z
(o1)
1 (t), . . . , zn(t), . . . , z(on)

n (t)) = 0, t ∈ [1,∞), oi ≤ 3, i = 1 . . . n,
(3.9)

to (0, 1]. From

(

z′′i

(
1

t

))′
= − 1

t2
z
(3)
i

(
1

t

)

(3.10)
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3.1 Transformation of the Independent Variable

and the formulas derived for the second order problem, we obtain

z
(3)
i

(
1

t

)

= −t2
(

z′′i

(
1

t

))′

= −t2(−t2(−t2z′i+n(t))′)′ (3.11)

and substitute in (3.9) accordingly.
It is important to notice that transformation of boundary conditions other than
Dirichlet posed at infinity cannot be carried out in such an automatic manner.
In this case further analysis has to be made. Consider for illustration, boundary
conditions including the first derivative. According to (3.4) one cannot pose the
boundary condition z′i+n(0) = 0 without further knowledge of the behaviour of the
first derivative of zi+n as it tends to 0.
While for many second order problems typical boundary conditions at infinity are
anyway of the Dirichlet type this does not hold in general, if the order of the dif-
ferential operator is higher than two, cf. [29].
Hence, in the implementation of this automatic transformation problems with such
boundary conditions are not accepted to avoid the described difficulties. The user
then has to transform the problem manually and supply admissible boundary con-
ditions.

• Transformation of an arbitrarily high order equation

Replacing the highest derivative by

(−t2) [−t2(−t2(. . . (−t2z′i+n)′)′)′]′
︸ ︷︷ ︸

(k-1)-products

= z
(k)
i (3.12)

and the lower derivatives accordingly, transforms an equation of arbitrarily high
order from [1,∞) to the finite interval [0, 1].

For illustration we consider the density profile equation which is also treated in [18, p.44].

Example 3.1.

z′′(t) = −2

t
z′(t) + 4(z(t) + 1)z(t)(z(t) − 0.1), (3.13)

z′(0) = 0, z(∞) = 0.1. (3.14)

Application of the described transformation yields the augmented BVP,

z′′1 (t) = −2

t
z′1(t) + 4(z1(t) + 1)z1(t)(z1(t) − 0.1), (3.15)

z′′2 (t) = − 4

t4
(z2(t) + 1)z2(t)(z2(t) − 0.1), (3.16)

z1(1) = z2(1), z′1(1) = −z′2(1), z1(0) = 0, z2(0) = 0.1. (3.17)
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3 Problems Posed on Semi-Infinite Intervals

3.2 Implementation

The Matlab Code bvpsuite

bvpsuite is a code designed for the solution of singular and regular BVPs, cf. [20]. It
features a wide range of algorithmic components. The code is capable of computing the
solution of implicit nonlinear mixed order systems of ODEs which possibly feature un-
kown parameters or singularities. For accurate computations a mesh adaptation strategy
is realized. Moreover a pathfollowing strategy extends the scope of the code and also
index-1 differential algebraic equations can be solved successfully. In the course of this
work two new modules were realized in order to augment the existing code. These include

• a driver routine for the interval reduction [a,∞), a ≥ 0 to the finite interval [0, 1]
and

• a module for the solution of differential eigenvalue problems.

The package bvpsuite has been developed in the Matlab versions 7.0-7.1 and requires
the Symbolic Math Toolbox. It features a graphical user interface (GUI) which ensures
a high level of usability.
The package bvpsuite contains the following m-files:

• bvpsuite.m – main routine to start the GUI.

• equations.m – contains the most important parts of the code, e.g. setting up the
nonlinear system of equations for the Newton solver.

• solve_nonlinear_sys.m – contains the Newton solver.

• run.m – manages routine calls.

• errorestimate.m – provides error estimates.

• meshadaptation.m – runs the automatic grid control.

• initialmesh.m – provides the initial data for the Newton solver.

• pathfollowing.m – realizes the pathfollowing routine.

• settings.m – opens a window for setting parameters.

• sbvpset.m – sets the options for the Newton solver.

• EVPmodule.m – carries out the reformulation of an EVP to a BVP.

• trafomodule.m – automatically transforms a problem posed on a semi-infinite in-
terval [a,∞), a ≥ 0 to a finite domain, (0, 1/a] for a > 0, and [0, 1] for a = 0.

• backtransf.m – back-transforms the solution to the interval [a, L] ⊂ [a,∞), L large.

• plot_results.m – provides graphical solution output.
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3.2 Implementation

• plotrange.m – defines settings for a solution plot on a subinterval [a, L] ⊂ [a,∞),
L large.

• err.m – contains error messages.

We refer the reader to the detailed manual of the code cf. [20].
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Chapter 4

Collocation Methods for the

Computation of Eigenvalues and

Eigenfunctions

4.1 Conversion of the Eigenvalue Problem to a ‘Standard’

BVP

This method is strongly influenced by an approach for the treatment of unknown param-
eters in the context of BVPs.
To illustrate the approach introduced in [2] we consider a singular first order eigenvalue
problem

z′(t) −A(t)z(t) = λz(t), t ∈ (0, 1], (4.1)

B0z(0) +B1z(1) = 0, (4.2)

where A(t) = M(t)
tα , α ≥ 1 and B0 and B1 are constant n× n matrices. M(t) is required

to be sufficiently smooth. Note that z(t) ∈ R
n.

The problem is said to have a singularity of the first kind if α = 1 while for
α > 1 the singularity is called singularity of the second kind or essential singularity.
Our aim is to find values for λ so that problem (4.1) – (4.2) has nontrivial solutions z(t).
Note that, in general, if z(t) is an eigenfunction then so is βz(t), β ∈ R, which means
that a priori we do not have uniqueness. The approach illustrated below will incorporate
uniqueness of the eigenfunctions.
The method presented in [2] can be applied if for each eigenvalue the corresponding
eigenspace is of dimension one. If so, the restriction,

∫ 1

0
||z(τ)||22dτ = 1, (4.3)

ensures the uniqueness of the eigenfunction up to the sign. Here, we denote ||z(t)||22 :=
∑n

i=1 |zi(t)|2. This requirement is most commonly satisfied in applications, as for example
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in regular Sturm-Liouville problems. The main idea of this approach is to reformulate
the original EVP as a standard BVP. First we interpret λ as a function of t and add the
trivial equation

λ′(t) = 0. (4.4)

Subsequently, we define

x(t) :=

∫ t

0
||z(τ)||22dτ, (4.5)

which yields
x′(t) = ||z(t)||22, x(0) = 0, x(1) = 1. (4.6)

In [2] it was demonstrated that the solution of the augmented problem, (4.1)–(4.2), (4.4)
and (4.6), is isolated if and only if the solution of the original eigenvalue problem (4.1)–
(4.2) is isolated. This theoretically supports the presented solution approach.
After this reformulation of the problem, any suitable numerical method for singular
boundary value problems in ODEs can be used. As mentioned before the method applied
here is polynomial collocation, cf. [1], which has proven to be a robust technique for solving
boundary value problems with singularities, cf. [9] and references therein. See the section
about polynomial collocation for more details.
Collocation is also a suitable method for problems with a singularity of the second kind.

4.2 Singular Boundary Value Problems

First order singular boundary value problems in ODEs often take the form

tαz′(t) = f(t, z(t)), 0 < t ≤ 1, (4.7)

b(z(0), z(1)) = 0, (4.8)

where α ≥ 1, z ∈ C[0, 1] ∩ C1(0, 1] and f and b are nonlinear mappings on suitable do-
mains. The case α = 1, which determines a singularity of the first kind, is often obtained
when partial differential equations are reduced to ODEs using their symmetries. A sin-
gularity of the second kind, α > 1, on the other hand often results from transformation
of problems on semi-infinite intervals to a finite interval.
In the second order case a singular problem is given by

z′′(t) =
1

tα
f(t, z′(t)) +

1

tα+1
g(t, z(t)), 0 < t ≤ 1, (4.9)

b(y(0), y′(0); y(1), y′(1)) = 0. (4.10)

As a model example we consider the linear first order system

z′(t) = −M(t)

t
z(t) + f(t, z(t)), 0 < t ≤ 1. (4.11)

Since the right-hand side of the system of singular equations is in general neither continu-
ous nor Lipschitz continuous on the closed interval [0, 1], the standard theory for ‘smooth’
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problems to show existence and uniqueness of a solution cannot be adopted. However,
one is still interested in computing continuous solutions of (4.11), z(t) ∈ C[0, 1], or even
z(t) ∈ Cm[0, 1], m ≥ 1. We assume that M(t) can be written as M(t) = M(0) + tC,
C ∈ C[0, 1]. Since the direction field is unsmooth the existence of a smooth solution
critically depends on the spectrum of M(0). More precisely, in [13] it is shown that the
smoothness of z(t) depends on the smoothness of the nonlinear function f and the size
of the positive real parts of the eigenvalues of M(0).
For detailed analytical and numerical results on singular boundary value problems for
first order systems see [13], [14], and [15]. For second order problems we refer the reader
to [32] and [33].

4.3 Polynomial Collocation

As mentioned in Section 4.1 the numerical method to solve the augmented BVP (4.1)–
(4.2), (4.4) and (4.6) is collocation. A collocation solution is a piecewise polynomial that
satisfies the ODE in predefined collocation points. We present now the method for a first
order problem

z′(t) = f(t, z(t)), 0 < t ≤ 1, (4.12)

b(z(0), z(1)) = 0. (4.13)

cf. [1]. However, extension to higher order problems is straightforward. Here m is the
number of points which are placed in each subinterval.
First we consider a polynomial pk(t) of degree ≤ m defined on [tk, tk+1] by the interpo-
lation conditions,

pk(tk) = zk, (4.14)

p′k(tkj) = f(tkj , zkj), 1 ≤ j ≤ m. (4.15)

The points tkj are defined as in Chapter 1, cf. Figure 1.1. The aim is to exploit this
information in order to obtain an approximation of the solution at tk+1. Since the
polynomial can be written in terms of its first derivative,

pk(t) = zk +

∫ t

tk

p′k(ξ)dξ, (4.16)

we can further derive

pk(tkj) = zk +

∫ tkj

tk

m∑

i=1

f(tki, zki)Li

(
ξ − tk
hk

)

dξ

= zk + hk

m∑

i=1

αjif(tki, zki) =: zkj , (4.17)

pk(tk+1) = zk + hk

m∑

i=1

βif(tki, zki) =: zk+1, (4.18)
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and hence obtain a numerical scheme for the approximation (z0, . . . , zN ) of the exact
solution z(t). The approximations zkj are defined implicitly by a system of (non)linear
equations, cf. (4.17). This system of nonlinear equations is typically solved by the Newton
method. Li denotes the i-th Lagrange basis polynomial on the interval [0, 1]. The ap-
proximating solution is a globally continuous piecewise polynomial function p(t) := pk(t),
t ∈ [tk, tk+1], k = 0, . . . , N − 1 which satisfies the boundary conditions b(p(0), p(1)) = 0.
Combining (4.15) and (4.17) one notices that the piecewise polynomial function p(t) sat-
isfies the ODE at the collocation points.
The code bvpsuite uses the Runge-Kutta basis to represent the polynomials, which offers
certain computational advantages (cf. [3]).

4.4 Convergence of Collocation Methods

We state here classical results on the numerical solution obtained by the collocation
method presented in [1] and [4] and make use of the notation introduced in Chapter 1.
In a numerical algorithm it is of interest to control the global error eh(tk), that is

eh(tk) := z(tk) − zk, (4.19)

where z(tk) denotes the exact solution evaluated at tk and zk is the numerical solution
at the k-th mesh point. The notation clearly indicates that the global error depends on
the chosen step size. The order of convergence characterizes the efficiency for obtaining
a desired level of accuracy.

A numerical algorithm is called convergent of order p if

max
0≤k≤N

|eh(tk)| = O(hp), h → 0. (4.20)

In the following the results are presented for linear first order problems:

z′(t) =
f(t, z)

tα
, t ∈ (0, 1], (4.21a)

B0z(0) +B1z(1) = β. (4.21b)

For regular problems, where α = 0 in (4.21a), with sufficiently smooth data, the following
convergence results hold (cf. [1], [4]).

Theorem 4.1. Let z(t) be an isolated, sufficiently smooth solution of (4.21) and let f be
twice continuously differentiable in a neighborhood of z. Then for any collocation scheme
there exist constants r,h0 > 0 such that the following statements hold for all meshes ∆
with h ≤ h0:

• There exists a unique solution p(t) of the nonlinear system of collocation equations
in a tube of radius r around z(t).

28



4.4 Convergence of Collocation Methods

• This solution can be computed by Newton’s method which converges quadratically
provided that the initial guess p[0](t) is sufficiently close to z(t).

• The following error estimates hold:

‖R∆(z) −R∆(p)‖∆ = O(hm+ν), (4.22a)

‖z − p‖ = O(hm+µ), (4.22b)

‖z(l) − p(l)‖ = O(hm+1−l), l = 1, . . . ,m, (4.22c)

provided that the m canonical collocation points ρ1, . . . , ρm satisfy the orthogonality
conditions

∫ 1

0
sk

m∏

l=1

(s− ρl) ds = 0, k = 0, . . . , ν − 1, ν ≤ m. (4.23)

In (4.22b), µ = 0 for ν = 0 and µ = 1 otherwise.

The result in (4.22a) is also called superconvergence.
For proofs see for example [1].
For a singularity of the first kind, where α = 1 in (4.21), similar existence and uniqueness
results can be proven under appropriate assumptions which guarantee the well-posedness
of the boundary value problem and the smoothness of its solution. The estimates (4.22a)
and (4.22b) have to be replaced by

‖R∆(z) −R∆(p)‖∆ = O(hm| ln(h)|n0−1), (4.24a)

‖z − p‖ = O(hm| ln(h)|n0−1) (4.24b)

with ν = 0 and

‖R∆(z) −R∆(p)‖∆ = O(hm+1| ln(h)|n0−1), (4.25a)

‖z − p‖ = O(hm+1| ln(h)|n0−1) (4.25b)

if (4.23) holds with ν ≥ 1, see [21], [5] for details. The positive integer n0 is defined
by the structure of the linearization of (4.21), see for example [13]. The perturbation
of the convergence order by the logarithmic terms is usually too small to be noticed
experimentally.

For problems with an essential singularity, no theoretical results are known for general
high-order collocation methods. However, usually the stage order O(hm) is observed
for any choice of symmetric collocation points. The superconvergence orders observed
experimentically for ν ≥ 1 in (4.23) are

‖R∆(z) −R∆(p)‖∆ = O(hm+γ), (4.26a)

‖z − p‖ = O(hm+γ), (4.26b)

where 0 < γ = γ(α) < 1, and γ decreases with increasing α.
For collocation points which are not symmetric, rapid divergence of the numerical solution
was observed.
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4 Collocation Methods for the Computation of Eigenvalues and Eigenfunctions

Empirical Convergence Order

In the following consider an equidistant mesh ∆ with step size hi =
(

1
2

)i
h0.

The vector zhi
is the solution of the numerical method with step size hi. Accordingly zhi+1

denotes the numerical solution with step size hi

2 and zhi+2 is the analogue for hi

4 . These
grid functions constitute a finite-dimensional normed subspace of the solution space of
the analytical problem. We now assume that the error is O(hp) and additionally

zhi
− z(t) ≈ Chp

i , hi → 0,

where z is the exact solution and C is a constant that is independent of t and h. Conse-
quently,

zhi+1 − z ≈ C

(
hi

2

)p

,

zhi+2 − z ≈ C

(
hi

4

)p

,

and therefore it holds that

zhi
− zhi+1 ≈ Chp

i

(

1 − 1

2p

)

, (4.27)

zhi+1 − zhi+2 ≈ Chp
i

(

1 − 1

2p

)
1

2p
. (4.28)

This leads to an empirical estimate for the order of convergence

p ≈
ln
( ‖zhi

−zhi+1
‖∆

‖zhi+1
−zhi+2

‖∆

)

ln(2)
.

Another way to estimate the order of convergence is to calculate a so-called reference
solution, which is a numerical approximation for the exact solution computed with a
very small step size href . By assuming that the step size href is small enough so that

‖zhi
− zhref

‖∆ ≫ ‖zhref
− z‖∆ (4.29)

holds, the estimated order of convergence is

p ≈
ln
( ‖zhi

−zhref
‖∆

‖zhi+1
−zhref

‖∆

)

ln(2)
.
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4.5 Numerical Example

4.5 Numerical Example

As an illustrating example we consider the radial equation of the hydrogen problem
(2.13). For reasons of comparison with other literature, cf. [31], we set u(r) = rR(r).

Example 4.1.

−u′′(r) +
(

l(l+1)
r2 − γ

r

)

u(r) = λu(r), r ∈ (0,∞), (4.30)

u(0) = 0, u(∞) = 0. (4.31)

Reformulation to a BVP according to the method described in Section 4.1 and a
subsequent application of the transformation presented in Chapter 3 yields, t ∈ [0, 1],

u′′1(t) =

(
l(l + 1)

t2
− γ

t

)

u1(t) − u2(t)u1(t), (4.32)

u′2(t) = 0, (4.33)

u′3(t) = u2
1(t), (4.34)

u′′4(t) = −2

t
u′4(t) +

(
l(l + 1)

t2
− γ

t3

)

u4(t) −
1

t4
u5(t)u4(t), (4.35)

u′5(t) = 0, (4.36)

u′6(t) = − 1

t2
u2

4(t), (4.37)

with the boundary conditions

u1(0) = 0, u4(0) = 0, u1(1) = u4(1), u′1(1) = −u′4(1), u2(1) = u5(1),

u3(1) = u6(1), u3(0) = 0, u6(0) = 1.

In the following computations we set γ = 2 and l = 0.
For l = 0 this problem is regular if posed on a finite interval and transformed to first order
using Euler’s transformation. However, the transformation from a semi-infinite interval
generically gives rise to singularities. Therefore also this problem becomes singular, cf.
(4.32)–(4.37).
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4 Collocation Methods for the Computation of Eigenvalues and Eigenfunctions

We used the Matlab code bvpsuite to calculate the eigenfunctions and eigenvalues.
Table 4.1 shows the results received without the mesh adaptation strategy.
Tables 4.2 and 4.3 illustrate the advantages of the mesh adaptation strategy incorporated
in bvpsuite. For obtaining the same accuracy of the computed eigenvalue far less mesh
points are required.

n λ
(0)
n λexact

n λn abs. err. rel. err. Gauss N

1 -1.0000 −1 -1.00000035e+00 3.5409e−07 3.5409e−07 1 1000
2 -0.2500 −1

4 -2.50000198e−01 1.9790e−07 7.9161e−07 1 1000
3 -0.1100 −1

9 -1.11110675e−01 4.3595e−07 3.9236e−06 1 1000
4 -0.0625 − 1

16 -6.24973725e−02 2.6275e−06 4.2040e−05 1 1000
5 -0.0400 − 1

25 -3.99923145e−02 7.6855e−05 1.9214e−04 1 1000
6 -0.0278 − 1

36 -2.77605356e−02 1.7242e−05 6.2072e−04 1 1000
7 -0.0204 − 1

49 -2.03750305e−02 3.31335−05 1.6235e−03 1 1000
8 -0.0156 − 1

64 -1.55679504e−02 5.7050e−05 3.6512e−03 1 1000
9 -0.0123 − 1

81 -1.22560174e−02 8.9662e−05 7.2263e−03 1 1000

Table 4.1: Example 4.1: Eigenvalues of the hydrogen atom with l = 0.
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n λ
(0)
n λexact

n λn abs. err. rel. err. Gauss N abs.err (adapt) rel.err (adapt)

3 -0.11 −1
9 -1.11111122e−01 6.1430e−08 5.5287e−07 2 113 2.7256e−09 2.4530e−08

4 -0.0625 − 1
16 -6.25000293e−02 2.9318e−08 4.6908e−07 2 175 4.2353e−09 6.7765e−08

5 -0.0400 − 1
25 -3.99998136e−02 1.8634e−07 4.6585e−06 2 219 8.7454e−07 3.4982e−06

6 -0.0278 − 1
36 -2.77775526e−02 2.2522e−07 8.1078e−06 2 391 2.2522e−07 8.1078e−06

Table 4.2: Example 4.1 with l = 2: Eigenvalues of the hydrogen atom for the four lowest values of the principal quantum
number n. We applied the mesh adaptation strategy to achieve accurate results and compared those to the errors
achieved on equidistant meshes with the same number of points as in the final adapted mesh. The absolute tolerance
was set to 10−9.

n λ
(0)
n λexact

n λn abs. err. rel. err. Gauss N abs.err (adapt) rel.err (adapt) Nadapt

3 -0.11 −1
9 -1.11111111e−01 1.2040e−10 1.0892e−09 2 535 1.2103e−10 1.0836e−09 240

4 -0.0625 − 1
16 -6.25000005e−02 4.7800e−10 7.6480e−09 2 488 4.7817e−10 7.6508e−09 397

5 -0.0400 − 1
25 -3.99999983e−02 1.6866e−09 4.2164e−08 2 750 1.6944e−09 4.2359e−08 469

6 -0.0278 − 1
36 -2.77777774e−02 5.7082e−10 2.0549e−08 2 1804 5.7082e−10 2.0549e−08 1804

Table 4.3: Example 4.1 with l = 2: Eigenvalues and errors computed on equidistant meshes compared to the corresponding
results achieved by applying a mesh adaptation strategy. The resulting number of subintervals, N and Nadapt

respectively, are presented.
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4 Collocation Methods for the Computation of Eigenvalues and Eigenfunctions

Figures 4.1 and 4.2 show the adapted meshes on which the eigenfunctions of Example
4.1 were calculated. Since for higher values of n the eigenfunctions become more oscilla-
tory, the mesh adaptation strategy is forced to insert a large number of mesh points in
order to fulfill the prescribed tolerances. This leads to almost equidistant meshes with a
large number of mesh points. On the other hand, for lower values of n the automatically
selected mesh shows a concentration of points where the function has a steep profile.

Figure 4.1: Example 4.1 with l = 2 and n = 3: Approximations of the solution u on [0, 1]
(uppermost graph) and u on [1,∞) transformed to [0, 1] (central graph). The
computations were carried out with 2 Gaussian points and tola = 10−4 and
tolr = 10−2. The automatically selected mesh contains 113 points (lower
graph).
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4.5 Numerical Example

Figure 4.2: Example 4.1 with l = 2 and n = 6: Approximations of the solution u on [0, 1]
(uppermost graph) and u on [1,∞) transformed to [0, 1] (central graph). The
computations were carried out with 2 Gaussian points and tola = 10−4 and
tolr = 10−2. The automatically selected mesh contains 319 points (lower
graph).

0 5 10 15 20 25
−0.5
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Figure 4.3: Example 4.1: Approximations of R(r) for γ = 2 and l = 0 fixed. n = 1 –
blue line, n = 2 – green line, n = 3 – red line, n = 4 – black line.

Figure 4.3 and Figure 4.4 show that the wave functions (eigenfunctions) become more
oscillatory as n in (2.14) increases. In more detail, the number of zeros of the eigenfunc-
tion is given by n − l − 1, where n denotes the principal quantum number and l is the
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Figure 4.4: Example 4.1: Approximations of R(r) for γ = 2 and l = 0 fixed. n = 5 –blue
line, n = 6 – green line, n = 7 –red line.

angular momentum quantum number. As the index increases the eigenvalue tends to zero.

Figure 4.5 illustrates the behaviour of the error as a function of r as h → 0. This
experiment shows the expected decrease in the error as h tends to 0.

For the computation of the eigenfunctions no starting profile was used. Therefore a faster
convergence of the Newton solver might be achieved if further calculations are done using
the given computed solution as starting profile.
As already known from Chapter 2 the eigenvalues accumulate at 0. This makes the
solution more sensitive to starting values as n in (2.14) increases, which can be seen
in Table 4.1 above. Occasionally the code computes a different solution if the starting
value is badly chosen. Furthermore it was observed that the eigenpair computed by our
method is not only sensitive with respect to the starting value but also the number of
points in the initial grid. Depending on the given problem, it can be rather difficult to
choose the right combination of number of intervals and starting values to compute not
only one eigenvalue–eigenfunction pair, but rather a sequence of them. For example, this
can be observed if the eigenvalues lie close to each other. This problem can be overcome
if the starting profiles are provided with reasonable accuracy for instance as the result of
the application of the matrix method described in Chapter 5.

Tables 4.4–4.9 below show the estimated order of convergence for the first and fourth
solution component of the augmented BVP (4.32)–(4.37) with l = 0 and n = 1. Tables
4.10–4.15 below show the estimated order of convergence for the first and fourth solution
component of the augmented BVP (4.32)–(4.37) with l = 1 and n = 2. uhi

∈ R
(Ni+1)6 de-

notes the numerical approximation. With uj
hi

, j = 1 . . . 6, we denote the approximations
for the solution components respectively.
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4.5 Numerical Example

i ||u1
hi

− u1
hi+1

|| pmesh ||u1
hi

− u1
hi+1

||grid pgrid

1 5.085848e−04 1.994396 4.168537e−04 1.993940
2 1.276410e−04 1.998784 1.046521e−04 1.998671
3 3.193717e−05 1.999707 2.618715e−05 1.999679
4 7.985914e−06 1.999927 6.548244e−06 1.999920
5 1.996579e−06 1.999982 1.637151e−06 1.999980
6 4.991510e−07 1.999995 4.092934e−07 1.999995
7 1.247881e−07 1.999999 1.023237e−07 1.999999
8 3.119706e−08 — 2.558095e−08 —

Table 4.4: Example 4.1: Estimated order of convergence for the first solution component
with n = 1 and l = 0 for 1 equidistant point

i ||u4
hi

− u4
hi+1

|| pmesh || u4
hi

− u4
hi+1

||grid pgrid

1 6.968058e−04 2.002786 6.968058e−04 2.002786
2 1.738654e−04 2.005332 1.738654e−04 2.005332
3 4.330600e−05 2.000873 4.330600e−05 2.000873
4 1.081995e−05 2.000137 1.081995e−05 2.000137
5 2.704729e−06 2.000076 2.704729e−06 2.000076
6 6.761465e−07 1.999998 6.761465e−07 1.999998
7 1.690369e−07 2.000005 1.690369e−07 2.000005
8 4.225907e−08 — 4.225907e−08 —

Table 4.5: Example 4.1: Estimated order of convergence for the fourth solution compo-
nent with n = 1 and l = 0 for 1 equidistant point

i ||u1
hi

− u1
hi+1

|| pmesh ||u1
hi

− u1
hi+1

||grid pgrid

1 1.318707e−06 3.973531 6.673500e−07 3.974119
2 8.394531e−08 3.995758 4.246436e−08 3.995902
3 5.262032e−09 3.998900 2.661572e−09 3.998923
4 3.291279e−10 3.999654 1.664725e−10 3.999557
5 2.057543e−11 3.998747 1.040773e−11 4.002719
6 1.287082e−12 3.985266 6.492584e−13 3.984297
7 8.126833e−14 3.584963 4.102274e−14 4.103166
8 6.772360e−15 — 2.386980e−15 —

Table 4.6: Example 4.1: Estimated order of convergence for the first solution component
with n = 1 and l = 0 for 3 equidistant points
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i ||u4
hi

− u4
hi+1

|| pmesh || u4
hi

− u4
hi+1

||grid pgrid

1 1.101407e−05 4.560435 1.101407e−05 4.560435
2 4.667887e−07 4.156966 4.667887e−07 4.156966
3 2.616670e−08 4.023932 2.616670e−08 4.020808
4 1.608513e−09 4.007994 1.612000e−09 4.006897
5 9.997656e−11 4.000844 1.002695e−10 4.001710
6 6.244881e−12 4.000613 6.259424e−12 4.002013
7 3.901393e−13 4.002645 3.906684e−13 4.003573
8 2.433904e−14 — 2.435638e−14 —

Table 4.7: Example 4.1: Estimated order of convergence for the fourth solution compo-
nent with n = 1 and l = 0 for 3 equidistant points

i ||u1
hi

− u1
hi+1

|| pmesh || u1
hi

− u1
hi+1

||grid pgrid

1 3.994545e−09 6.303264 3.994545e−09 6.299036
2 5.058198e−11 5.976238 5.073042e−11 5.963423
3 8.034684e−13 5.938533 8.130163e−13 5.931328
4 1.310063e−14 3.182203 1.332268e−14 3.206451
5 1.443290e−15 0.000000 1.443290e−15 -0.106915
6 1.443290e−15 -0.106915 1.554312e−15 -0.099536
7 1.554312e−15 -1.050626 1.665335e−15 -1.000000
8 3.219647e−15 — 3.330669e−15 —

Table 4.8: Example 4.1: Estimated order of convergence for the first solution component
with n = 1 and l = 0 for 3 Gaussian points

i ||u4
hi

− u4
hi+1

|| pmesh || u4
hi

− u4
hi+1

||grid pgrid

1 8.224465e−07 6.711230 9.829328e−07 4.599578
2 7.849211e−09 5.284870 4.054272e−08 4.854216
3 2.013361e−10 5.937768 1.401678e−09 4.979019
4 3.284545e−12 5.949071 4.444408e−11 5.018679
5 5.316506e−14 5.203045 1.371011e−12 5.007493
6 1.443290e−15 -0.884523 4.262216e−14 3.999648
7 2.664535e−15 -0.058894 2.664535e−15 -0.115477
8 2.775558e−15 — 2.886580e−15 —

Table 4.9: Example 4.1: Estimated order of convergence for the fourth solution compo-
nent with n = 1 and l = 0 for 3 Gaussian points
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i ||u1
hi

− u1
hi+1

|| pmesh ||u1
hi

− u1
hi+1

||grid pgrid

1 8.272038e−04 1.729028 8.272038e−04 1.729028
2 2.495302e−04 1.979731 2.495302e−04 1.979731
3 6.326516e−05 1.996560 6.326516e−05 1.996560
4 1.585405e−05 1.999193 1.585405e−05 1.999193
5 3.965728e−06 1.999802 3.965728e−06 1.999802
6 9.915685e−07 1.999951 9.915685e−07 1.999951
7 2.479006e−07 1.999988 2.479006e−07 1.999988
8 6.197568e−08 — 6.197568e−08 —

Table 4.10: Example 4.1: Estimated order of convergence for the first solution component
with n = 2 and l = 1 for 1 equidistant point

i ||u4
hi

− u4
hi+1

|| pmesh ||u4
hi

− u4
hi+1

||grid pgrid

1 4.667196e−03 2.127049 4.667196e−03 2.127049
2 1.068441e−03 1.981596 1.068441e−03 1.981596
3 2.705395e−04 2.014268 2.705395e−04 2.014268
4 6.696926e−05 2.003567 6.696926e−05 2.003567
5 1.670097e−05 2.000892 1.670097e−05 2.000892
6 4.172662e−06 2.000223 4.172662e−06 2.000223
7 1.043004e−06 2.000056 1.043004e−06 2.000056
8 2.607410e−07 — 2.607410e−07 —

Table 4.11: Example 4.1: Estimated order of convergence for the fourth solution compo-
nent with n = 2 and l = 1 for 1 equidistant point

i ||u1
hi

− u1
hi+1

|| pmesh ||u1
hi

− u1
hi+1

||grid pgrid

1 2.116202e−05 3.746490 2.116202e−05 3.746490
2 1.576708e−06 3.869702 1.576708e−06 3.869702
3 1.078587e−07 3.993161 1.078587e−07 3.993161
4 6.773200e−09 3.998092 6.773200e−09 3.998092
5 4.238852e−10 3.999505 4.238852e−10 3.999505
6 2.650193e−11 3.999626 2.650193e−11 3.999626
7 1.656800e−12 3.997983 1.656800e−12 3.997983
8 1.036948e−13 — 1.036948e−13 —

Table 4.12: Example 4.1: Estimated order of convergence for the first solution component
with n = 2 and l = 1 for 3 equidistant points
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i ||u4
hi

− u4
hi+1

|| pmesh ||u4
hi

− u4
hi+1

|grid pgrid

1 3.072696e−04 3.357097 3.072696e−04 3.357097
2 2.998698e−05 4.363612 2.998698e−05 4.363612
3 1.456649e−06 4.081981 1.456649e−06 4.081981
4 8.601138e−08 4.005522 8.601138e−08 4.003213
5 5.355175e−09 4.001371 5.363752e−09 4.001545
6 3.343804e−10 4.000304 3.348757e−10 4.001133
7 2.089437e−11 4.000243 2.091330e−11 4.000829
8 1.305678e−12 — 1.306330e−12 —

Table 4.13: Example 4.1: Estimated order of convergence for the fourth solution compo-
nent with n = 2 and l = 1 for 3 equidistant points

i ||u1
hi

− u1
hi+1

|| pmesh ||u1
hi

− u1
hi+1

||grid pgrid

1 2.203592e−06 9.341077 2.203592e−06 9.341077
2 3.397714e−09 4.979050 3.397714e−09 4.979050
3 1.077317e−10 5.969322 1.077317e−10 5.969322
4 1.719486e−12 6.011198 1.719486e−12 6.011198
5 2.665923e−14 5.024999 2.665923e−14 4.976904
6 8.187895e−16 2.075288 8.465451e−16 2.023847
7 1.942890e−16 -0.440573 2.081668e−16 -0.341037
8 2.636780e−16 — 2.636780e−16 —

Table 4.14: Example 4.1: Estimated order of convergence for the first solution component
with n = 2 and l = 1 for 3 Gaussian points

i ||u4
hi

− u4
hi+1

|| pmesh ||u4
hi

− u4
hi+1

|grid pgrid

1 5.221505e−05 5.280777 5.221505e−05 4.345399
2 1.343146e−06 4.611058 2.568622e−06 4.044302
3 5.496125e−08 6.308793 1.556840e−07 4.930927
4 6.932990e−10 5.928641 5.103721e−09 5.014538
5 1.138209e−11 5.942675 1.578922e−10 5.009676
6 1.850539e−13 5.983217 4.901150e−12 5.009057
7 2.925300e−15 0.434261 1.522025e−13 5.007629
8 2.164935e−15 — 4.731241e−15 —

Table 4.15: Example 4.1: Estimated order of convergence for the fourth solution compo-
nent with n = 2 and l = 1 for 3 Gaussian points
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Figure 4.5: Error pattern of the solution u(r) of Example 4.1 for decreasing step sizes.

Figures 4.6 and 4.7 illustrate the results given in the tables. However only the errors
at mesh points were used for the illustrations.
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Figure 4.6: Example 4.1: Order of convergence for u1
hi

with n = 1 and l = 0.

Figure 4.7: Example 4.1: Order of convergence for u1
hi

with n = 2 and l = 0.
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4.6 Discussion

The numerical method described in Chapter 4 requires the solution of a singular BVP
for each pair of eigenvalues/eigenfunctions. This is a drawback in cases where several
eigenvalues have to be computed.
When solving the one-dimensional, time-independent Schrödinger equation, approxi-
mately 10 eigenvalues are sought. In this case it is more efficient to use a so-called
matrix method, where a larger number of eigenvalues and eigenvectors are obtained si-
multaneously, see Chapter 5.
The fact that the sequence of eigenvalues lies in [−1, 0) and accumulates at zero makes
the computations more delicate.
We encountered the phenomenon that the resulting pair depends critically on the start-
ing value for the nonlinear solver and the initial grid. However if only a few eigenvalues
have to be calculated, the technique described above is of advantage because stability
and convergence results are already known from the study of polynomial collocation for
singular BVPs. As shown in the figures above the empirical convergence results are sat-
isfactory. The order of convergence increases with the number of collocation points. This
demonstrates that the given results are reliable.
Another advantage of this technique is that it is generally applicable to a wide range of
problems without the need of manual transformation or other preprocessing. The refor-
mulations required for this approach are automatically performed by our code.
Note that by adding the new equations one implicitly requires that the algebraic mul-
tiplicity of the eigenvalue is 1. This is indeed a restriction on the problem class which
can be treated by this method. According to the presented results this method is highly
successful in cases where a particular eigenvalue has to be computed.
Nevertheless, to have a better insight it has to be investigated how the given approach
compares to methods which are specifically designed for eigenvalue problems such as in
[27], cf. Chapter 2.
An attractive alternative is constituted by matrix methods, which turn out to be easily
implemented and reliable. They represent a reasonable approach if a sequence of eigen-
values has to be computed or starting profiles for the collocation approach are sought,
see Chapter 5 below.

4.7 Implementation of the Eigenvalue Module

Our goal was to augment the existing collocation code bvpsuite with a module for
solving eigenvalue problems for ODEs. As described above this was done by interpreting
the given eigenvalue problem as a related boundary value problem. The module is now
able to recast the eigenvalue problem (EVP) according to the method described above
automatically. Therefore, the GUI had to be changed, to enable the user to specify that
the given problem is an eigenvalue problem. The m-file evpmodule.m of the bvpsuite

package realizes this reformulation. Since the numerical method which approximates the
solution of the BVP is polynomial collocation, in general a set of nonlinear equations
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results. These equations are solved by the Newton method. Therefore an initial guess
has to be provided. For eigenvalue problems the user can either provide a guess for the
eigenvalue only, which corresponds to a constant function of the prescribed value, or
in case that an approximiation of the eigenfunction is known, an initial profile can be
prescribed.
To illustrate the handling of the GUI, we consider Example 4.1.

Figure 4.8: GUI input for Example 4.1
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Figure 4.9: Graphical presentation for Example 4.1
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Chapter 5

Matrix Methods

A matrix method represents an alternative solution method for the calculation of pairs
of eigenvalues and eigenfunctions if several of these are sought. The basic idea is to
approximate the derivatives with finite differences.
As it is explained below, application of matrix methods to eigenvalue problems in ODEs
leads either to algebraic eigenvalue problems of the form

Ax = λx, (5.1)

or to generalized algebraic eigenvalue problems of the form

Ax = λBx, (5.2)

where A and B are (N · n) × (N · n)-matrices and x is a vector of length N · n. The
value of N is determined by the grid ∆ and n denotes the dimension of the given system
of differential equations. Therefore the eigenvalue problem for differential equations can
be considered as the limit N → ∞ of the finite-dimensional problems.

5.1 The Algebraic Eigenvalue Problem

An eigenvalue λ ∈ C of a square matrix A = (ajk) ∈ K
n×n (K = C or K = R) is a scalar

such that the equation

Ax = λx, (5.3)

has a nontrivial solution vector x ∈ C denoted as the corresponding eigenvector.
Given a pair (A, B), where A and B are square n×n matrices, the generalized (nonsym-
metric) eigenvalue problem is to find the eigenvalues λ and corresponding eigenvectors
x 6= 0 such that

Ax = λBx. (5.4)

If the determinant of A−λB is identically zero for all values of λ, the eigenvalue problem
is called singular, otherwise we call it regular. If B is singular, then there are p finite
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generalized eigenvalues and n− p infinite eigenvalues, where p is the degree of the deter-
minant of A−λB. However, if B is nonsingular then the eigenvalues of (5.4) correspond
to those of the matrix B−1A.
In our implementation, the eigenvalues and eigenfunctions are calculated via Matlab’s
built-in function eig(A,B), which solves the generalized eigenvalue problem Ax = λBx
for square matrices A and B. Since in general B is not symmetric, the Matlab routine
eigs(A,B, k), which returns the k largest or smallest generalized eigenvalues for symmet-
ric problems, cannot be used. This leads to a high computational effort as the step size
h gets smaller because for each h the whole algebraic spectrum σ(A) is calculated and
the problem size increases as h→ 0.

5.2 A Matrix Method for a Singular First Order Differential

EVP

In [13] a thorough analysis is given for singular first order EVPs of the form

z′(t) −
(
M

t
+A0(t)

)

z(t) = λG(t)z(t), 0 < t ≤ 1, (5.5)

B̃0z(0) + B̃1z(1) = 0, (5.6)

where z(t) ∈ C[0, 1] ∩ C1(0, 1] is an n-vector, A0(t), G(t) ∈ C[0, 1] are n × n matrices,
M , B̃0 and B̃1 are constant n× n matrices.
This general formulation also includes the case when eigenvalue problems of higher order
equations are transformed to a first order system. For such problems the matrix B in
(5.4) is singular. According to the results in [13], B can be any square matrix. However,
standard solution routines for the algebraic eigenvalue problem are commonly designed
for the case where A is symmetric and B is symmetric and positive definite.
Defining the differential operator L by

(Lz)(t) = z′(t) −
(
M

t
+A0(t)

)

z(t), (5.7)

we can rewrite (5.5) in the form,

(L− λG)z = 0, z ∈ D(L), (5.8)

where G : C[0, 1] → C[0, 1] is the bounded linear multiplication operator defined by
(Gz)(t) = G(t)z(t).
The numerical scheme proposed in [22] and [13] to approximate (5.5)–(5.6) is the so-
called box scheme which is sometimes also denoted as implicit midpoint rule.
By defining tj+1/2 :=

tj+tj+1

2 the approximation scheme for the singular first order prob-
lem is given by

zj+1 − zj
h

− 1

2

(
M

tj+1/2
+A0(tj+1/2)

)

(zj+1 + zj) = λ
1

2
G(tj+1/2)(zj+1 + zj),

j = 0, . . . , N − 1,

B̃0z0 + B̃1zN = 0, Qz0 = 0.

(5.9)
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Since this numerical scheme uses no evaluation at t0 = 0, it can be applied straight
forwardly to singular problems. If the problem has a singularity of the first kind, we
assume that the only possible eigenvalues of M lying on the imaginary axis are zero.
The projection matrix Q in (5.9) is defined as

Q := I − P, (5.10)

where P denotes the projection onto the direct sum of the subspaces X0 and X+ of M .
Here, X0 denotes the eigenspace corresponding to the eigenvalue zero and X+ is the
invariant subspace which corresponds to the eigenvalues with positive real parts.
The condition Qz0 = 0 has to be satisfied for a well-posed problem.
In detailed matrix form the box scheme can be written as










D0 R0

D1 R1

. . .
. . .

DN−1 RN−1

B0 B1

















z0
z1
...
zN








=

λ










G0 G0

G1 G1

. . .
. . .

GN−1 GN−1

0 0

















z0
z1
...
zN







, (5.11)

where Dj , Gj and Rj are n× n matrices given by

Dj = −h−1
j I − 1

2

(
M

tj+1/2
+A0(tj+1/2)

)

, (5.12)

Rj = h−1
j I − 1

2

(
M

tj+1/2
+A0(tj+1/2)

)

, (5.13)

Gj =
1

2
G(tj+1/2), j = 0, . . . , N − 1. (5.14)

Here I denotes the identity matrix of dimension n. B0 and B1 correspond to the bound-
ary conditions in (5.9) including condition that are equivalent to the linear independent
rows of Qz0 = 0.

Since we approximate the solution (5.5)–(5.6) by solving the numerical scheme (5.9)
for a small step size hi, our aim is to estimate the approximation quality. Therefore,
we are interested in how fast the computed value λn,h converges to the exact eigenvalue
λexact

n as h tends to 0. In [13] the following convergence result is given:
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Theorem 5.1. Assume that if M has eigenvalues with positive real part σ0, then σ0 > 2.
Then if A0, G ∈ C2

n×n[0, 1],

max
1≤k≤τ

|λexact
n − λk

n,h| ≤ C · (h2| ln(h)|d−1)
1
κ ,

where τ is the dimension of the eigenspace corresponding to λexact
n , d is the dimension

of the largest Jordan box associated with the eigenvalue 0 of M , κ is the smallest integer
l for which the nullspaces (I − λexact

n L−1G)l and (I − λexact
n L−1G)l+1 coincide and λk

n,h

are the numerical approximations of λexact
n .

Proof. For the proof see Theorem 5.1 in [13].

The assumption on σ0 is associated with the properties of the fundamental matrix for
the solutions of singular boundary value problems, cf. [13]. For 0 < σ0 ≤ 2, corresponding
results can be stated, where the order of convergence is reduced.

Identification of the Eigenfunctions

One big advantage of matrix methods is that by solving the algebraic generalized eigen-
value problem, approximations for several eigenvalues as well as associated eigenfunctions
are obtained simultaneously. Our aim is to reconstruct the approximate eigenfunctions
from the eigenvectors of the algebraic eigenvalue problem. We are particularly interested
in the realization of this reconstruction for problems that comprise systems of equations
and are additionally posed on semi-infinite intervals. In Chapter 3 we described that in
our approach for problems that are posed on a semi-infinite interval, the interval is split
and the dimension of the system is doubled.
Since the code can also cope with higher order problems, such problems first have to be
transformed to a first order system and subsequently the number of equations is doubled
by transforming the system to the finite interval [0, 1]. If the original problem consists of
a single equation of order n, then after reducing the order and transforming to the finite
interval, the differential eigenvalue problem that is actually solved numerically consists
of 2n first order equations. Subsequently, these 2n equations are approximated by the
box scheme which leads to a high dimensional algebraic eigenvalue problem.
For example, for a second order equation the solution components are,

z1(τ) := z(t), for τ = t ∈ [0, 1], (5.15)

z2(τ) := z′(t), for τ = t ∈ [0, 1], (5.16)

z3(τ) := z(1/t), for
1

τ
= t ∈ [1,∞), (5.17)

z4(τ) := z′(1/t), for
1

τ
= t ∈ [1,∞). (5.18)

We point out that there is some freedom of choice in the transformation to the first
order. Alternatively it is also possible to transform to first order by using the Euler
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5.2 A Matrix Method for a Singular First Order Differential EVP

transformation (z1(t), z2(t)) = (z(t), tz′(t)).
Specifically, if

zh = (z0, z1, . . . , zN ) (5.19)

denotes the eigenvector corresponding to a specific approximate eigenvalue λn,1/N , then

z1h
= (z0, z4, z8, . . . , zN−4), (5.20)

z2h
= (z2, z6, z10, . . . , zN−3) (5.21)

are the two approximating solution components constituting the eigenfunction zh on
[0, L], L large.

Numerical Examples

To illustrate the technique we consider the problem

Example 5.1.

z′(t) − 1

t

(
0 −1
0 1

)

z(t) = λ

(
0 0
t 0

)

z(t), t ∈ (0, 1], (5.22)

(
0 1
0 0

)

z(0) +

(
0 0
1 0

)

z(1) = 0. (5.23)

Since this problem is singular we have to calculate the eigenvalues ofM and determine the
projection matrix Q in order to check the well-posedness of the problem. The eigenvalues
are µ1 = 0 and µ2 = −1. Therefore, z2(0) = 0 has to be satisfied for Example 5.1 to be

well-posed. In the tables below we used λref
n from [2]. By λn,hi

we denote the numerical
approximation for the eigenvalue λn computed with step size hi.

i |λ1,hi
− λref

1 | convλ

1 5.4863e−04 2.0325
2 1.3410e−04 2.0165
3 3.3144e−05 2.0082
4 8.2392e−06 —

Table 5.1: Example 5.1: Estimated order of convergence for λref
1 .

Subsequently, we consider the first order formulation of the decoupled one-particle
stationary Schrödinger equation transformed to the interval [0, 1], cf. Chapter 4. To
obtain a first order formulation we used Euler’s transformation.
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i |λ2,hi
− λref

2 | convλ

1 1.7120e−02 2.0171
2 4.2298e−03 2.0084
3 1.0513e−03 2.0042
4 2.6206e−04 —

Table 5.2: Example 5.1: Estimated order of convergence for λref
2 .

i |λ3,hi
− λref

3 | convλ

1 1.0182e−01 2.0153
2 2.5186e−02 2.0074
3 6.2644e−03 2.0036
4 1.5622e−03 —

Table 5.3: Example 5.1: Estimated order of convergence for λref
3 .

Example 5.2.

z′(r)− 1

r2







0 0 r 0
0 0 0 r

rl(l + 1) − r2γ 0 r 0
0 rl(l + 1) − γ 0 −r






z(r) = λ







0 0 0 0
0 0 0 0
−r 0 0 0
0 − 1

r3 0 0






z(r),

(5.24)

with the boundary conditions







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






z(0) +







0 0 0 0
0 0 0 0
0 0 1 1
1 −1 0 0






z(1) =







0
0
0
0






. (5.25)

To analyze the convergence behaviour of the given problem, we calculated the empir-
ical orders of convergence for the first few eigenvalues. The calculations were started
with h1 = 1/50. Since h1 = 1/50 only gives the lowest 3 eigenvalues with satisfactory
accuracy, the empirical convergence orders for those are presented in Tables 5.5 − 5.7.
Furthermore we computed the first 8 eigenvalues for γ = 2 and l = 3 and present abso-
lute and relative errors. By applying the numerical scheme described above and setting
h = 1/400 we obtain the numerical results given in Table 5.4.
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n λexact
n λn abs. error rel. error

4 − 1
16 -6.24823563e−02 1.76436805e−05 2.82298887e−04

5 − 1
25 -3.99078287e−02 9.21712695e−05 2.30428173e−03

6 − 1
36 -2.75055075e−02 2.72270269e−04 9.80172967e−03

7 − 1
49 -1.97899027e−02 6.18260564e−04 3.02947676e−02

8 − 1
64 -1.43720049e−02 1.25299512e−03 8.01916880e−02

9 − 1
81 -1.00214370e−02 2.32424199e−03 1.88263601e−01

10 − 1
100 -6.76435637e−03 3.23564363e−03 3.23564363e−00

11 − 1
121 -2.49806416e−03 5.76639865e−03 6.97734237e−00

Table 5.4: Example 5.2: Eigenvalues of the hydrogen atom with γ = 2 and l = 3.

i |λ4,hi
− λ4,hi+1 | convλ

1 1.221113e−03 2.383187
2 2.340697e−04 2.121570
3 5.378845e−05 2.021840
4 1.324508e−05 —

Table 5.5: Example 5.2: Estimated order of convergence for λexact
4 = 1

16 .

i |λ5,hi
− λ5,hi+1 | convλ

1 9.395408e−03 2.537248
2 1.618557e−03 2.490702
3 2.879731e−04 2.055563
4 6.927329e−05 —

Table 5.6: Example 5.2: Estimated order of convergence for λexact
5 = 1

25 .

i |λ6,hi
− λ6,hi+1 | convλ

1 6.640375e−03 0.906395
2 3.542750e−03 2.003884
3 8.833061e−04 2.106550
4 2.051051e−04 —

Table 5.7: Example 5.2: Estimated order of convergence for λexact
6 = 1

36 .
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5.3 A Matrix Method for a Singular Second Order

Differential EVP

Since many well-studied and classical eigenvalue problems arise in the context of Sturm-
Liouville problems, we are particularly interested in second order problems. We also
observed that transformation of a second order problem to first order and subsequent
numerical solution leads to high computational effort. This is due to the fact that the
resulting algebraic problem which has to be solved becomes very large.
Hence, we also discuss the following problem:

−y′′(t) +A1(t)y
′(t) +A0(t)y(t) = λG(t)y(t), 0 < t ≤ 1, (5.26)

B0(y(0), y′(0))T +B1(y(1), y′(1))T = 0, (5.27)

where y(t) ∈ C[0, 1] ∩ C2(0, 1] is an n-vector.

We say the problem has a singularity of the first kind if A1(t) = M1(t)
t and A0(t) = M0(t)

t2

with Mi ∈ C1[0, 1] and G ∈ C[0, 1]. By Taylor expansion,

y(tj ± h) = y(tj) ± hy′(tj) +
h2

2
y′′(tj) ±

h3

6
y(3)(tj) +O(h4), (5.28)

we can express the first and second derivatives as

y′(tj) =
y(tj+1) − y(tj−1)

2h
+O(h2) (5.29)

y′′(tj) =
y(tj+1) − 2y(tj) + y(tj−1)

h2
+O(h3). (5.30)

Using (5.29) − (5.30) we can approximate (5.26) in the following way:

−y(ti+1) − 2y(ti) + y(ti−1)

h2
+A1(ti)

y(ti+1) − y(ti−1)

2h
+A0(ti)y(ti) = λG(ti), 1 ≤ i ≤ N−1.

(5.31)
In the second order case one also has to approximate the first derivative at the endpoints.
Hence, we carry out a Taylor expansion about the endpoints t0 and tN of the exact
solution y(t) which is assumed to exist:

y(t1) = y(t0) + hy′(t0) + h2

2 y
′′(t0) +O(h3), (5.32)

y(t2) = y(t0) + 2hy′(t0) + 4h2

2 y′′(t0) +O(h3). (5.33)

Multiplying (5.32) by 4 and subtracting (5.33) we obtain an approximation for y′(t0),

y′(t0) =
−3y(t0) + 4y(t1) − y(t2)

2h
+O(h2). (5.34)

The same argument applies if we expand about tN and therefore we obtain:

y′(tN ) =
y(tN−2) − 4y(tN−1) + 3y(tN )

2h
+O(h2). (5.35)
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To determine eigenvalues and eigenfunctions we need N+1 linear equations for the N+1
unknowns. In detailed matrix form the scheme described above reads,










D1 E1 F1 DN+1 EN+1 FN+1

D2 E2 F2

D3 E3 F3

. . .
. . .

DN EN FN

















y0

y1
...
yN








=

λ










0 0 0 0 0 0
G2 G2

G3 G3

. . .
. . .

GN GN

















y0

y1
...
yN







, (5.36)

where Dj , Ej and Fj , j = 2, . . . , N are n × n matrices and B0 = (B01|B02) and BN =
(BN1|BN2) such that Dj , Ej and Fj , j ∈ {1, N + 1} are n×m matrices with

D1 = B01 −
3

2h
B02, (5.37)

E1 =
2

h
B02, (5.38)

F1 = − 1

2h
B02, (5.39)

Dj = − 1

h2
I − 1

2h
A1(tj), (5.40)

Ej =
2

h2
I +A0(tj), (5.41)

Fj = − 1

h2
I +

1

2h
A1(tj), (5.42)

Gj = G(tj), j = 2, . . . , N, (5.43)

DN+1 = BN1 −
2

h
BN2, (5.44)

EN+1 =
1

2h
BN2, (5.45)

FN+1 =
3

2h
BN2. (5.46)

(5.47)

Since for the second order singular eigenvalue problem in its general form no error
analysis could be found, we cannot state any results here. However, our examples below
also comprise singular problems and show promising values for the estimated errors
and convergence orders. However, for the special class of Sturm-Liouville problems,
convergence results can be stated. It holds that the approximation quality decreases
rapidly as the index of the eigenvalue grows.
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If we denote the lowest eigenvalue by λ1 and so forth, according to [17] the following
result holds,

Theorem 5.2. For the Sturm-Liouville problem

−(py′)′ + qy = λy, (5.48)

y(0) = y(π) = 0, (5.49)

there exists a constant C such that the kth eigenvalue λk and the approximating
eigenvalue λk,hi

satisfy

|λexact
k − λk,hi

| ≤ Ch2k4, (5.50)

provided that p(3) and q′′ are continuous.

To understand the statement above, we need the Lemma below. In the following we
denote the eigenfunction corresponding to the k-th eigenvalue by y[k](t).

Lemma 1. The k-th eigenfunction of the Sturm-Liouville problem

−(py′)′ + qy = λy, (5.51)

y(0) = y(π) = 0, (5.52)

can be asymptotically represented by

y[k](t) = ck
sin
(

k π
l

∫ t
0

√
1
pdτ
)

4
√
p

+O

(
1

k

)

, (5.53)

where

l =

∫ π

0

√
1

p
dt (5.54)

and ck is a normalizing factor in the L2-norm.

Proof. For the proof see [10, pp. 336-339].

For the proof of Theorem 5.2 we need the notion of local truncation error,

τh[y[k]] = (τh[y[k](t1)], . . . , τh[y[k](tN )]), (5.55)

which is defined as the residual when the exact solution y[k](t) is substituted into the
numerical scheme.

Proof. The numerical scheme

−
(
pi+1/2(yi+1 − yi)/h− pi−1/2(yi − yi−1)/h

)
/h+ qiyi = λyi, (5.56)
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yields an algebraic EVP with eigenvalues λk,h satisfying, according to Keller’s conver-
gence theorem (cf. [17, Theorem 1]),

|λexact
k − λk,h| ≤

||τh[y[k]]||2
||y[k]||2

, (5.57)

where τh[y[k]] denotes the local truncation error.
Hence, we have to find a bound for τh[yk(ti)].
To estimate τh[y[k](ti)], Taylor’s theorem is used.

y[k](ti ± h) = y[k](ti) ± hy[k]′(ti) +
h2

2
y[k]′′(ti) ±

h3

6
y[k](3)(ti) (5.58)

+
h4

24
y[k](4)(ti) +O(h5),

p(ti ±
h

2
) = p(ti) ±

h

2
p′(ti) +

h2

8
p′′(ti) ±

h3

48
p(3)(ti) +O(h4). (5.59)

By inserting (5.58)–(5.59) into (5.56) and collecting like powers of h, the leading term
of the local truncation error has the form

τh[y[k](ti)] = −
(

2p(ti)y
[k](4)(ti) + 4p′(ti)y

[k](3)(ti) + 3p′′(ti)y
[k]′′(ti) + p(3)(ti)y

[k](ti)
) h2

24
.

(5.60)
According to (5.53), the fourth derivative of y[k] in the error expansion gives rise to the
factor k4. Therefore it follows that

|λexact
k − λk,h| = O(h2k4). (5.61)

For a detailed proof cf. [17], [25] and [27].
For problems of the more general form −y′′ + qy = λgy the same estimate holds with
the additional factor ||B−1||, with B from (5.2), on the right-hand side of (5.50), pro-
vided that also g′′ is continuous. Hence, we can conclude that B must be invertible and
therefore this result is not applicable in the more general setting. Due to (5.61), the er-
ror grows rapidly with increasing k. These observations are also confirmed in our setting.

Numerical Examples

Calculations with the matrix method module implemented in Matlab backed up the
results stated above. See, for example, Table 5.8, which shows the dependence of the
error on the eigenvalue index for the following regular example,

Example 5.3.

−y′′(t) + ety(t) = λy(t), t ∈ [0, π], (5.62)

y(0) = y(π) = 0, (5.63)

57
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for a fixed h = 1/80. The reference solution λref
k was calculated using h = 1/1500.

This problem often occurs in the literature for comparisons of different numerical methods
for the solution of Sturm-Liouville problems. To determine p in O(kph2) empirically we
made the ansatz

|λexact
k − λk,hi

| ≈ Ch2kp, (5.64)

|λexact
k+j − λk+j,hi

| ≈ Ch2(k + j)p. (5.65)

(5.66)

Thus p can be approximated by

p ≈
ln

|λexact
k

−λk,h|
|λexact

k+j
−λk+j,h|

ln k
k+j

. (5.67)

For problems with a singular matrix B, as for the hydrogen atom, this behavior could

Index |λk,h − λref
k | p

1 0.0007 2.5825
2 0.0043 −
5 0.0827 3.8980
6 0.1683 −
10 1.2773 3.9824
11 1.8670 −
15 6.4152 3.9739
16 8.2907 −

Table 5.8: Example 5.3: Empirical value of p with a fixed step size h = 1/80.

not be observed.
Although we are not aware of any theoretical background for such problems, based on
numerical experiments we conjecture that also in this case the error grows with the index
of the eigenvalue.
To illustrate this phenomenon we consider the equation for the hydrogen atom, cf. Ex-
ample 5.4 in Chapter 4.

Example 5.4.

−u′′(r) +
(

l(l+1)
r2 − γ

r

)

u(r) = λu(r), r ∈ (0,∞), (5.68)

u(0) = 0, u(∞) = 0. (5.69)

In the following we set γ = 2 and l = 3. With a step size of h = 1/1000 we obtained
the results in Table 5.9, where n denotes the principal quantum number as introduced
in Chapter 2. For the angular momentum quantum number l = 2 the lowest eigenvalue
exists for n = 4.
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n λexact
n λn abs. error rel. error

4 − 1
16 -6.25018751e−02 1.8751021e8−06 3.00016348e−05

5 − 1
25 -4.00086284e−02 8.62841398e−06 2.15710350e−04

6 − 1
36 -2.78015623e−02 2.37845506e−05 8.56243823e−04

7 − 1
49 -2.04597484e−02 5.15851809e−05 2.52767386e−03

8 − 1
64 -1.57223228e−02 9.73227865e−05 6.22865834e−03

9 − 1
81 -1.25135678e−02 1.67888738e−04 1.35989878e−02

10 − 1
100 -1.02736283e−03 2.73628306e−04 2.73628306e−02

11 − 1
121 -8.69513057e−03 4.30667756e−04 5.21107984e−02

Table 5.9: Example 5.4: Eigenvalues of the hydrogen atom with γ = 2 and l = 3.

n |λk,h − λexact
k | p

4 1.87510218e−06 2.2021
5 8.62841398e−06 2.5008
6 2.37845506e−05 2.6912
7 5.15851809e−05 2.8448
8 9.73227865e−05 2.9907
9 1.67888738e−04 3.1688
10 2.73628306e−04 3.3967
11 4.30667756e−04 −

Table 5.10: Example 5.4: Empirical value of p with a fixed step size h = 1/1000 of the
hydrogen equation.

Table 5.10 gives empirical values for p similar to those in Table 5.8 which do not give
a clear picture on the actual dependence.

Tables 5.11 – 5.13 show the estimated order of convergence for the first 3 eigenvalues
of the hydrogen equation with l = 2.

i |λ4,hi
− λexact

4 | convλ

1 7.5708e−04 2.0180
2 1.8692e−04 1.9935
3 4.6940e−05 2.0015
4 1.1723e−05 2.0004
5 2.9299e−06 —

Table 5.11: Example 5.4: Estimated order of convergence for λexact
4 . The computations

were started with h1 = 1/50.

Since we are not aware of theoretical results on the quality of the approximation
scheme for singular second order problems, we want to point out in Table 5.14 that
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i |λ5,hi
− λexact

5 | convλ

1 2.1916e−03 1.2730
2 9.0685e−04 2.0577
3 2.1782e−04 2.0110
4 5.4041e−05 2.0027
5 1.3485e−05 —

Table 5.12: Example 5.4: Estimated order of convergence for λexact
5 . The computations

were started with h1 = 1/50.

i |λ6,hi
− λexact

6 | convλ

1 6.2692e−03 0.8224
2 3.5453e−03 2.5795
3 5.9311e−04 1.9850
4 1.4983e−04 2.0102
5 3.7194e−05 —

Table 5.13: Example 5.4: Estimated order of convergence for λexact
6 . The computations

were started with h1 = 1/50.

accurate results for important examples as the hydrogen equation can be obtained under
significantly less computational cost than for the first order formulation.

l n abs. err rel. err dim (1st order) dim (2nd order)

1 4 3.3 · 10−5 5.0 · 10−4 2804 1062
2 4 3.0 · 10−5 4.9 · 10−4 2204 862
3 4 3.1 · 10−5 5.0 · 10−4 1204 492

Table 5.14: Computational cost comparison between Example 5.4 and 5.2: We applied
the matrix method to the first and second order formulations of the hydrogen
equation for various values of the quantum numbers l. In the last two columns
the dimension of the square matrix B of the resulting algebraic eigenvalue
problem is given.

Typically, physicists are particularly interested in the first few eigenvalues, which cor-
respond to the lowest bound energies. Table 5.10 shows that for these the accuracy
deteriorates with order > 2 as the index of the eigenvalue increases.

To deal with this undesired behavior, there exist correction techniques for Sturm-
Liouville problems in normal form with the result that the eigenvalue approximation
deteriorates only linearly with k, cf. [27]. Application of this correction technique could
also be advantageous for problems with a singular matrix B.
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In the following we want to point out and demonstrate that in contrast to other
standard approaches for the solution of eigenvalue problems in ODEs, the matrix method
immediately incorporates the numerical treatment of vector eigenvalue problems. The
problem formulations for the first order problem (5.5)–(5.6) as well as for the second
order problem (5.26)–(5.27) in Chapter 5 already include the n-dimensional case.
We also want to mention that in principle we could as well apply the collocation method
described in Chapter 4. However, this requires that all eigenvalues have multiplicity 1.

To demonstrate the success of the approximation by finite differences, we consider
three test examples of higher dimension also presented in [23]. We solved Example 5.5,
which is posed as a regular problem on [0.1, 1] in [23], also on the domain [0, 1] so that
a singularity arises at the left endpoint.

Example 5.5. We consider the example

y′′(t) =








cos(t) + 1
t − λ cos(t)

2
cos(t)

3
cos(t)

4
cos(t)

2
cos(t)

2 + 1
t2
− λ cos(t)

3
cos(t)

4
cos(t)

3
cos(t)

3
cos(t)

3 + 1
t3
− λ cos(t)

4
cos(t)

4
cos(t)

4
cos(t)

4
cos(t)

4 + 1
t4
− λ







y(t),

(5.70)
with the boundary conditions

y(0.1) = y(1) = 0 and alternatively y(0) = y(1) = 0. (5.71)

In the computations we set h = 1/200. The numerical results are given in Tables 5.15
and 5.16. Since we are not aware if this problem was originally posed as either regular
or singular, we just want to point out that the eigenvalues change significantly when the
problem is solved on [0, 1].
Note the huge difference in the 5th eigenvalue.

Index λk,h

1 14.9415
2 17.0432
3 21.3799
4 26.9199
5 51.8217
6 55.7994

Table 5.15: Example 5.5: First 6 eigenvalues solved on [0.1, 1].

As a second test example we consider

Example 5.6.

y′′(t) =

(
3t
2 − λ − t

2
− t

2
3t
2 − λ

)

y(t), t ∈ [0, 1], (5.72)
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Index λk,h

1 13.0509
2 16.3685
3 21.3537
4 26.9181
5 43.3868
6 52.0515

Table 5.16: Example 5.5: First 6 eigenvalues solved on [0, 1].

with the boundary conditions
y(a) = y(b) = 0. (5.73)

This example is of particular interest because the eigenvalues appear pairwise. Hence,
we choose a very small step size, h = 1/1600, in order to obtain accurate results.The
numerical results are given in Table 5.17.
Example 5.7 is particularly suitable to be solved by a matrix method approach, because

Index λk,h

1 10.3812
2 10.8782
3 40.0284
4 40.5297
5 89.4378
6 89.9387

Table 5.17: Example 5.6: First 6 eigenvalues.

the eigenvalues have multiplicity 2. This property places both examples outside the scope
of the collocation method considered in Chapter 4. The discretization step size is set to
h = 1/400.

Example 5.7.

y′′(t) =

(
t2 − λ 0

0 t2 − λ

)

y(t), t ∈ [0, 10], (5.74)

with the separated boundary conditions

y(a) = 0 y(b) = 0. (5.75)

The analytical eigenvalues of Example 5.7 are 3, 7, 11, . . ..
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Index λk,h

1 2.9998
2 2.9998
3 6.9998
4 6.9998
5 10.9998
6 10.9998

Table 5.18: First 6 eigenvalues of Example 5.7.

5.4 Discussion

The matrix method yields an appropriate solution method if several pairs of eigenvalues
and eigenfunctions are sought.
If the collocation method from Chapter 4 is used to obtain a new eigenvalue-eigenfunction
pair, a new starting value and starting profile have to be chosen and a new calculation has
to be performed. As mentioned there the selection of the starting value is even sensitive
to changes in the number of mesh points.
An advantage of this matrix method is that it yields several approximate eigenvalues
in one sweep. Moreover, no guess for the starting value has to be provided. Therefore
hardly any information about the eigenvalues or eigenfunctions of the given analytical
problem is required.
However, there are also some drawbacks of this technique. The given infinite-dimensional
problem is replaced by a matrix problem of dimension roughly the number of mesh points
N times the dimension of the system of ODEs. Solving this algebraic eigenvalue problem
demands an enormous computational effort as N increases.
Another drawback is that the box scheme is only of second order. This means that
accurate approximations can only be computed on relatively dense meshes. Acceleration
techniques such as extrapolation could be applied to increase the order of convergence,
cf. [22].
However the biggest disadvantage of these finite differences techniques is that the error
of the eigenvalue approximation increases rapidly with the index of the eigenvalue as
already mentioned in Section 5.3. These observations are our motivation to propose the
scheme described below, which exploits the advantages of both schemes described so far.

5.5 Matrix Method – a Procedure for Obtaining Accurate

Starting Profiles

We propose now a hybrid method based on both introduced solution approaches for the
solution of singular eigenvalue problems in ordinary differential equations. Since the
nonlinear collocation equations are solved by the Newton method, a starting profile is
required in order to resolve the eigenpair of interest by the iterative solver used in the
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computation. To obtain a good starting profile we considered the matrix method which
was described in previous sections of this chapter.
We consider three important applications which are of great interest in the field of quan-
tum mechanics.
All of these examples are posed on a semi-infinite interval. While physicists commonly
truncate and adapt the right endpoint of the interval depending on the requested eigen-
value, we apply here the transformation to a finite interval as recapitulated in Chapter 3.
To obtain accurate results we first solve the eigenvalue problems with the matrix method
and subsequently used the approximate eigenvalue and eigenfunction as initial guess for
the collocation method implemented in bvpsuite.
As a first example we consider the Schrödinger equation for one particle with the radi-
ally symmetric Yukawa potential with parameter α > 0. In the following we multiply
the Schrödinger operator as formulated in Chapter 2 by 1

2 which results in the so-called
Hartree formulation so that we can compare our results to those reported in [11]. Fur-
thermore, in the following it holds that n denotes the principal quantum with n ∈ N.

Example 5.8.

−1

2
u′′(r) +

(
l(l + 1)

2r2
− e−αr

r

)

u(r) = λu(r), 0 ≤ r <∞,(5.76a)

u(0) = 0, u(∞) = 0,(5.76b)

where l ∈ N0, the parameter α is called screening parameter and as usual λ denotes the
eigenvalue. Bound states exist only for certain values of α below a threshold αc. The
number of elements in the point spectrum varies with α. Note that for α = 0, Example
5.8 corresponds to the hydrogen problem which has infinitely many eigenvalues and was
already discussed in more detail in Chapter 2 and Chapter 4. We are interested in

• the values of α for which the number of eigenvalues changes and

• the value of αc so that for α > αc no bound states exist. In [28] this value is given
as 1.19061227 ± 0.00000004.

In the tables below n denotes the principle quantum number, no.coll is the number of
collocation points used, no.mesh is the number of mesh points in the final mesh, λ(0)

is the starting value for the eigenparameter obtained by the matrix method, errestλ,
errestrel

λ are the error estimates for the eigenvalue and errestu and errestrel
u are the

error estimates for the eigenfunction all obtained by the package bvpsuite.
Table 5.19 shows the comparison of eigenvalues for the Yukawa potential with values
cited in [28]. Table 5.20 compares our results with those in [11].

As a second example we consider again the one particle Hamiltonian but this time
containing a Hulthén potential.
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Example 5.9.

−1

2
u′′(r) +

(
l(l + 1)

2r2
− αe−αr

1 − e−αr

)

u(r) = λu(r), 0 ≤ r <∞,(5.77a)

u(0) = 0, u(∞) = 0.(5.77b)

According to [7] for l = 0 analytical results for the eigenvalues are given by

λexact
n = −1

2

(
1

n
− nα

2

)2

(5.78)

This relation shows how the eigenvalues compare to those of the Coulomb potential. Table
5.21 compares the computed eigenvalues for the Hulthén potential for several values of
α with those presented in [28]. Tables 5.19 – 5.21 show that we are capable of producing
accurate results for Examples 5.8 and 5.9. The numerical results for the eigenvalues
correspond with those reported in [28] and [11] up to the 13th (or even 15th) decimal
place. In contrast to the results reported in [28] and [11] we also present error estimates
which make our results trustworthy.

65



5
M

a
trix

M
eth

o
d
s

l α n N (MM) λ(0) (MM) no. coll. no. mesh bvpsuite errestλ errestrel
λ

errestu errestrel
u [28]

0 0.1 1 50 -0.4073 8 70 -0.40705803061326 2.2 · 10−19 5.3 · 10−19 2.1 · 10−17 2.9 · 10−17 -0.40705803061340
1 0.01 2 50 -0.1154 8 167 -0.11524522409056 1.1 · 10−19 9.4 · 10−19 1.5 · 10−18 3.5 · 10−18 -0.11524522409056
1 0.01 3 50 -0.0468 8 188 -0.04615310482916 8.2 · 10−20 1.8 · 10−18 1.7 · 10−18 5.5 · 10−18 -0.04615310482916
2 0.01 3 50 -0.0463 8 176 -0.04606145416066 5.4 · 10−20 1.2 · 10−18 1.5 · 10−18 4.7 · 10−18 -0.04606145416065
0 0.01 9 400 -0.00111 8 350 -0.00058524761250 7.2 · 10−21 1.2 · 10−17 4.9 · 10−18 4.4 · 10−17 -0.00058524761250
1 0.01 9 400 -0.00106 8 1034 -0.0005665076261 2.5 · 10−21 4.5 · 10−18 2.4 · 10−18 2.2 · 10−17 -0.00056650762617

Table 5.19: Example 5.8: Comparison of the eigenvalues of the Yukawa potential for several values of α reported in [28]. For
the computations we prescribed tola = 10−15 and tolr = 10−10.

l α n N (MM) λ(0) (MM) no. coll. no. mesh bvpsuite errestλ errestrel
λ

errestu errestrel
u [11]

0 0.5 1 25 -0.1489 8 85 -0.14811702188982 9.8 · 10−19 6.6 · 10−18 1.8 · 10−17 2.7 · 10−17 -0.14811702
0 0.8 1 25 -0.0452 8 158 -0.04470430449730 2.7 · 10−19 6.1 · 10−18 2.6 · 10−18 4.6 · 10−18 -0.447043
0 1 1 25 -0.0106 8 265 -0.01028578998998 5.3 · 10−19 5.2 · 10−17 9.6 · 10−18 2.2 · 10−17 -0.0102858
0 1.1 1 25 -0.00264 8 257 -0.00228724423404 2.1 · 10−19 9.1 · 10−17 5.9 · 10−18 1.8 · 10−17 -0.00228724

Table 5.20: Example 5.8: Comparison of the eigenvalues of the Yukawa potential for several values of α reported in [11]. For
the computations we prescribed tola = 10−15 and tolr = 10−10.
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l α n N (MM) λ(0) (MM) no. coll. no. mesh bvpsuite errestλ errestrel
λ

errestu errestrel
u [11]

0 0.002 1 50 -0.4993 8 67 -0.49900049999985 8.7 · 10−18 1.7 · 10−17 1.8 · 10−17 2.4 · 10−17 -0.4900050000000
2 0.15 3 50 -0.00153 8 235 -0.00139659246573 1.9 · 10−20 1.3 · 10−17 1.5 · 10−18 5.7 · 10−18 -0.00139659246573
1 0.02 8 500 -0.0012 6 1441 -0.0009868327076 2.6 · 10−21 2.6 · 10−18 1.5 · 10−18 1.2 · 10−17 -0.0009868327076

Table 5.21: Example 5.9: Comparison of the eigenvalues of the Hulthén potential for several values of α reported in [11]. For
the computations we prescribed tola = 10−15 and tolr = 10−10.

α n N (MM) λ(0) (MM) no. coll. no. mesh bvpsuite abs. err rel. err

0.002 1 50 -0.4993 8 62 −4.9900 · 10−01 1.5 · 10−13 2.9 · 10−13

0.05 1 50 -0.4876 8 67 −4.8758 · 10−01 1.4 · 10−13 3.0 · 10−13

0.05 2 50 -0.1132 8 152 −1.1281 · 10−01 2.8 · 10−14 2.5 · 10−13

1.97 1 400 -0.00011293 8 371 −1.1250 · 10−04 3.1 · 10−15 2.7 · 10−11

Table 5.22: Example 5.9 with l = 0: Comparison of the computed eigenvalues for several values of α with the corresponding
analytical results given in (5.78).
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The third example models the so-called Stark effect, cf. [30]. This effect occurs when
a hydrogen atom is placed in a static electric field. In our case the electric field is along
the z direction. This effect can be modeled by two coupled radial Schrödinger equations
resulting from transforming a PDE to a ODE system and its truncation.

Example 5.10.

[

−1

2

d2

dr2
+

(

−1
r − ε√

3
rfb(r)

ε√
3
rfb(r) −1

r + 1
r2

)]

u(r) = λu(r), 0 ≤ r <∞,(5.79a)

u(0) = 0, u(∞) = 0,(5.79b)

where fb(r) = e−br2
.

For the calculations we set ε = 10−4, 10−5 and b = 0, 10−10. We used the matrix method
with N = 200 to obtain accurate starting profiles. To our knowledge this problem
is usually not solved as a matrix valued eigenvalue problem. This distinguishes our
approach from others. Furthermore we are capable of solving Example 5.10 with b set to
0. We compared our numerical results with those obtained from perturbation theory as
can be seen in Tables 5.25–5.28. For bigger values of ε perturbation theory is not valid.
Figures 5.5–5.7 show the approximations for the eigenfunctions of Example 5.10. Table
5.29 shows the dependence of the eigenvalues on the parameter b. The errors between
the results for b = 0 and the corresponding values for b > 0 are presented. As b gets
smaller the eigenvalues converge to those for b = 0. The starting values for the collocation
method were obtained by the matrix method with N = 200 subintervals on [0, 1].
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Figure 5.1: Example 5.8 with α = 0.01, l = 2 and n = 3: Approximations of the solution
u on [0, 1] (uppermost graph) and u on [1,∞) transformed to [0, 1] (central
graph). The computations were carried out with 8 Gaussian points and tola =
10−10 and tolr = 10−6. The automatically selected mesh contains 52 points
(lower graph).

Figure 5.2: Example 5.8 with α = 0.01, l = 2 and n = 3: Approximation of the solution
u on [0, 50].
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Figure 5.3: Example 5.8 with α = 0.001, l = 1 and n = 9: Approximations of the
solution u on [0, 1] (uppermost graph) and u on [1,∞) transformed to [0, 1]
(central graph). The computations were carried out with 6 Gaussian points
and tola = 10−6 and tolr = 10−2. The automatically selected mesh contains
85 points (lower graph).

Figure 5.4: Example 5.8 with α = 0.001, l = 1 and n = 9: Approximation of the solution
u on [0, 450].
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n λ(0) (MM) no. coll. no.mesh bvpsuite errestλ errestrel
λ λper

1 -0.5001 8 100 -0.500000022499859 4.4 · 10−19 8.7 · 10−19 -0.500000022500000
2 -0.1253 8 163 -0.125300320116262 2.2 · 10−19 1.7 · 10−18 -0.125300840000000
3 -0.1247 8 163 -0.124700319903047 1.1 · 10−19 8.7 · 10−19 -0.124700840000000

Table 5.23: Example 5.10: The computed eigenvalues λ for ε = 10−4 and b = 0. The tolerances were set to tola = 10−15 and
tolr = 10−10.

n no. coll. no.mesh errestu1 errestrel
u1

errestu2 errestrel
u2

1 8 100 4.4 · 10−18 5.9 · 10−18 4.7 · 10−21 3.5 · 10−17

2 8 163 2.2 · 10−17 7.0 · 10−17 2.3 · 10−17 7.3 · 10−17

3 8 163 6.9 · 10−17 2.2 · 10−16 6.8 · 10−17 2.2 · 10−16

Table 5.24: Example 5.10: The computed error estimates for u1 and u2 corresponding to the eigenvalues presented in Table
5.27. The tolerances were set to tola = 10−15 and tolr = 10−10.
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n λ(0) (MM) no. coll. no.mesh bvpsuite errestλ errestrel
λ λper

1 -0.5000 8 99 -0.500000000224856 0 0 -0.500000000225000
2 -0.1251 8 166 -0.125030003200092 1.1 · 10−19 8.7 · 10−18 -0.125030008400000
3 -0.1250 8 217 -0.124970003199879 2.2 · 10−19 1.7 · 10−18 -0.124970008400000

Table 5.25: Example 5.10: The computed eigenvalues λ for ε = 10−5 and b = 0. The tolerances were set to tola = 10−15 and
tolr = 10−10.

n no. coll. no.mesh errestu1 errestrel
u1

errestu2 errestrel
u2

1 8 99 3.1 · 10−18 4.1 · 10−18 8.0 · 10−22 6.0 · 10−17

2 8 166 5.7 · 10−16 1.8 · 10−15 5.8 · 10−16 1.8 · 10−15

3 8 217 1.1 · 10−15 3.7 · 10−15 1.2 · 10−15 3.7 · 10−15

Table 5.26: Example 5.10: The computed error estimates for u1 and u2 corresponding to the eigenvalues presented in Table
5.25. The tolerances were set to tola = 10−15 and tolr = 10−10.
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n λ(0) (MM) no. coll. no.mesh bvpsuite errestλ errestrel
λ λper

1 -0.5001 8 100 -0.500000022499858 4.4 · 10−19 8.7 · 10−19 -0.500000022500000
2 -0.1253 8 163 -0.125300320114753 2.2 · 10−19 1.7 · 10−18 -0.125300840000000
3 -0.1247 8 164 -0.124700319904538 1.6 · 10−19 1.3 · 10−18 -0.124700840000000

Table 5.27: Example 5.10: The computed eigenvalues λ for ε = 10−4 and b = 10−10. The tolerances were set to tola = 10−15

and tolr = 10−10.

n no. coll. no.mesh errestu1 errestrel
u1

errestu2 errestrel
u2

1 8 100 3.5 · 10−18 4.7 · 10−18 4.7 · 10−21 3.5 · 10−17

2 8 163 3.3 · 10−18 1.1 · 10−17 2.8 · 10−18 9.1 · 10−18

3 8 164 2.2 · 10−16 3.1 · 10−16 2.2 · 10−16 3.1 · 10−16

Table 5.28: Example 5.10: The computed error estimates for u1 and u2 corresponding to the eigenvalues presented in Table
5.27. The tolerances were set to tola = 10−15 and tolr = 10−10.

b λ1 abs. err λ2 abs. err λ3 abs. err

10−10 -0.500000022499858 1.0 · 10−17 -0.125300320114753 1.5 · 10−12 -0.124700319904538 1.5 · 10−12

10−12 -0.500000022499858 1.0 · 10−17 -0.125300320116246 1.5 · 10−14 -0.124700319903062 1.5 · 10−14

10−14 -0.500000022499858 1.0 · 10−17 -0.125300320116261 1.0 · 10−17 -0.124700319903047 1.0 · 10−17

Table 5.29: Example 5.10: The computed eigenvalues λ for ε = 10−4 and various values of b. The tolerances were set to
tola = 10−15 and tolr = 10−10.
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Figure 5.5: Example 5.10: Eigenfunction for λ1 = −0.500000022499859 with ε = 10−4

and b = 0.
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Figure 5.6: Example 5.10: Eigenfunction for λ2 = −0.125300320116262 with ε = 10−4

and b = 0.
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Figure 5.7: Example 5.10: Eigenfunction for λ3 = −0.124700319903124 with ε = 10−4

and b = 0.
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5.6 Implementation

5.6.1 Files for this Module

The matrix method module is part of the package bvpsuite and contains the following
files:

• boxscheme.m – set up and solution of the algebraic eigenvalue problem which ap-
proximates a differential eigenvalue problem of first order.

• approx2ndorder.m – set up and solution of the algebraic eigenvalue problem which
approximates a differential eigenvalue problem of second order.

• evpsolve.m – main routine to start the GUI.

• evpsolve.fig – the corresponding GUI file.

5.6.2 Getting started

To run bvpsuite, start Matlab, change to the folder where bvpsuite is installed, and
type bvpsuite in the command line. The GUI window opens. To run evpsolve enter
a file name in the edit field ‘Name’ of the bvpsuite GUI and tick the box ‘Eigenvalue
problem - matrix method’. Consequently a new GUI opens. Henceforth, the bvpsuite

GUI controls are obsolete, since all inputs related to the solution of an EVP by the matrix
method are defined in the evpsolve GUI. The GUI windows are shown in Figure 5.8.
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Figure 5.8: Start evpsolve

5.6.3 Graphical User Interface Tutorial

The following example demonstrates how the GUI can be used to solve an EVP of
second order posed on [0,∞). For problems posed on semi-infinite intervals the code
performs an automatic transformation to a finite interval. Consequently, the code solves
the problem on the finite domain first and provides the user with a back-transformation
of the numerical solution to a truncated interval.

Example 5.11.

−y′′(t) + 2

(
l(l + 1)

2t2
− e−αt

t

)

y(t) = 2λy(t), 0 ≤ t <∞,(5.80a)

y(0) = 0, y(∞) = 0,(5.80b)

and set α = 0.01 an l = 2. The inputs are shown in Figure 5.9.

• Tick the check box ‘Eigenvalue problem - matrix method’ in the bvpsuite GUI.
Subsequently the evpsolve GUI pops up. Note that if you open an already existing
file you are asked to press the ‘Load’ button in order to load the data saved in the
evpfile into the GUI.
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• Since the given problem consists of one equation of order 2, insert the row vector
[2] in the field ‘Orders’.

• Tick the check box ‘Semi-infinite interval’.

• Insert the matrices A0=[+2/t^2-2*exp(-0.01*t)/t], A1=[0] and G=[2] to set up
the eigenvalue problem, cf. (5.26)–(5.27).

• Fill in the constant matrices Ba=[1,0;0,0] and Bb=[0,0;1,0] to specify the linear
boundary conditions Bay(a) +Bby(b) = 0.

• In the field ‘Discretization N’ insert 200 for the number of equidistantly spaced
mesh points in the interval (0, 1].

• Insert the left endpoint of the integration interval: a=0. Since the right endpoint
is ∞, type the string infinity in the corresponding edit field.

• Press ‘Save’ to store the input in the evpfile.

• The right-hand column of fields in the GUI handles the output. Check the box
for printing eigenvalues and insert 1 in the left edit field and 3 in the right one.
Consequently, the code generates a table whose entries are the eigenvalues with
indices between 1 and 3 and prints it in the Matlab workspace.

• Tick ‘Plot eigenfunction(s)’ for a plot of the eigenfunctions corresponding to the
requested eigenvalues. The plot range is determined by the discretization parameter
N because the computed solution on [0, 1] is back transformed to [1, N ].

• Finally, press ‘SOLVE’. See Figure 5.10 for the graphical output.

5.6.4 Graphical User Interface Controls

In this section all options for the GUI fields corresponding to the matrix methods are
described in detail.

Field Description

Orders Specify the orders of the differential equations.
The code can only deal with systems of order
one or order two, e.g. a system of 2 equations
of order 2 should be denoted by the row vector
[2,2].

Load If your file has already been saved once, then you
are asked to press the ‘Load’ button in order
to load the problem specifications, which were
saved in the evpfile, into the GUI.
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A0/A1/G Your system has either to be of second order,
−y′′+A1y′+A0y = λGy, or of first order, −y′+
A0y = λGy. Insert the matrices A1, A0 and G
in the corresponding fields. If A1 or A0 is empty,
insert a zero matrix of the corresponding size.

Boundary Condi-
tions Ba/Bb

The boundary conditions have to be linear and
homogeneous, i.e. Bay(a) + Bby(b) = 0. Insert
the constant matrices Ba and Bb. If the differ-
ential operator is of order 2, then Ba and Bb are
of dimension (2n)× (2n), where n is the number
of equations. In this case the first n columns of
Ba correspond to y1(a), . . . , yn(a) and the last n
rows correspond to y′1(a), . . . , y

′
n(a). The same

holds for Bb analogously.

Discretization N Insert the number of subintervals used for the
discretization. In case of a semi-infinite interval
N defines the number of subintervals on (0, 1].
Therefore the solution on the truncated interval
is provided at 2N − 1 points.

Integration inter-
val a/b

Insert the left endpoint a and the right endpoint
b of the interval on which the problem is posed.
If your problem is posed on a semi-infinite in-
terval, write infinity instead. The code is de-
signed to deal with problems posed on intervals
[a,∞), a ≥ 0.

Print eigenvalues
between the in-
dices

The eigenvalues with indices between the two in-
serted integers are printed in the Matlab com-
mand window. They are sorted in ascending or-
der. If the spectrum contains complex eigen-
values, whose imaginary part is not equal to 0,
they are listed at the end. Complex numbers are
sorted by their absolute values and matches are
further sorted by their angles.

Plot eigenfunc-
tions

Tick this checkbox if you want to have a plot of
the corresponding eigenfunctions.

SOLVE Starts the computations. Depending on the or-
ders of the differential equations either the func-
tion boxscheme.m, for first order problems, and
approx2ndorder.m for second order problems are
called.
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Figure 5.9: Example 5.11: GUI input data

Figure 5.10: Example 5.11: Results
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5.6.5 The evpfile

This section describes the general form of the evpfiles. Those files are generated auto-
matically by the GUI. In general, the inputs correspond to the inputs of the GUI.

function [ret] = evp_ex1(nr,t)

switch nr

% Define whether the problem is an EVP, which is solved by the matrix method.
case ’EVP_mm’

ret=true;

% Your problem is of the type −y′′ +A1y′ +A0y = λGy (or −y′ +A0y = λGy).
% Define the matrix G.

case ’G’

ret=[2,0;0,(1/t^4)*(2);];

% Define the matrix A0.
case ’A0’

ret=[+2/t^2-2*exp(-0.01*t)/t,0;

0,(1/t^4)*(+2/(1/t)^2-2*exp(-0.01*(1/t))/(1/t));];

% Define the matrix A1.
case ’A1’

ret=[0,0;0,(-1/t^2)*(0)-2/t;];

% The linear boundary conditions – the matrix Ba corresponds to the boundary condi-
tions at the left endpoint.

case ’Ba’

ret=[1+0*(-3/2),0,+0*(2),0,+0*(-1/2),0;

0+0*(-3/2),1,+0*(2),0,+0*(-1/2),0;

0,0,0,0,0,0;0,0,0,0,0,0;];

% The matrix Bb corresponds to the boundary conditions at the right endpoint
case ’Bb’

ret=[0,0,0,0,0,0;0,0,0,0,0,0;0,0,0,0,1,-1;

+1/2,+1/2,-2,-2,+3/2,+3/2;];

% a is the left endpoint of the integration domain. If your problem is posed on a
semi-infinite interval the code automatically transforms the problem to (0, 1].

case ’a’

ret=0;

% The right endpoint of the integration domain.
case ’b’
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ret=1;

% The number of subintervals in [a, b] which implicitly determine the dimension of the
discretized problem. If your problem is posed on a semi-infinite interval, N is the number
of subintervals in (0, 1]

case ’N’

ret=400;

% The left endpoint of the semi-infinite interval [a,∞), a ≥ 0.
case ’antwort_endpoint’

ret=0;

% boolean; determines if your problem is posed on a semi-infinite interval
case ’infinite’

ret=true;

% number of equations
case ’n’

ret=2;

% orders of differential equations to be solved;
case ’orders’

ret=2;

end

%Values read by bvpsuite GUI:

%EVP_mm

%true%#EVP_mm

%Values read by evpsolve GUI:

%infinite

%true%#infinite

%orders

%[2]%#orders

%a

%0%#a

%b

%1%#b

%N

%400%#N

%A0

%[+2/t^2-2*exp(-0.01*t)/t]%#A0

%A1

%[0]%#A1

%G

%[2]%#G
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%Ba

%[1,0;0,0]%#Ba

%Bb

%[0,0;1,0]%#Bb

%up_ind

%8%#up_ind

%low_ind

%1%#low_ind
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Chapter 6

Conclusions

In this work numerical methods for the solution of linear eigenvalue problems for systems
of ordinary differential equations are considered.
Two different approaches were implemented for this relevant and nontrivial problem.
We studied a collocation method in order to take advantage of the already existing code
bvpsuite which features an automatic mesh selection and an asymptotically correct er-
ror estimate. The reformulation of the eigenvalue problem as a related boundary value
problem makes it accessible to the routines of the code.
Additionally, we considered the matrix method. One reason why we followed this ap-
proach is that it incorporates the possibility to solve not only Sturm-Liouville type but
also more general problems. For this purpose, in Chapter 5 coupled vector eigenvalue
problems were considered and accurate solutions were computed. This distinguishes ma-
trix methods from most of the available standard codes described in Chapter 2. Moreover,
the matrix method serves very well as a procedure for finding good starting profiles for
the solution of the nonlinear collocation equations.
Unfortunately, the dimension of the resulting algebraic problem increases rapidly as the
discretization parameter tends to zero. This leads to a high computational effort, be-
cause even for these small step sizes the current Matlab implementation only allows to
compute the whole discrete spectrum of the discretized problem. Since we are only inter-
ested in a small number of eigenvalues, performance improvements could be achieved by
developing faster solver routines for the solution of the algebraic eigenvalue problem, pro-
viding only the relevant fraction of the eigenvalues, and suitable for a high-performance
(parallel) implementation.
According to results stated in Chapter 5 the accuracy of the eigenvalue approximation
decreases with the index of the eigenvalue. This means that for eigenvalues with a higher
index small step sizes have to be taken in order to achieve satisfactory accuracy. Whereas
the numerical solution of one-dimensional Sturm-Liouville problems has been extensively
studied in the literature, methods for coupled high dimensional eigenvalue problems are
not so well-known. By a combination of the two presented numerical methods we were
able to solve such high dimensional EVPs, which frequently arise in quantum mechanics,
to an accuracy comparable with recent results in the literature, cf. Section 5 in Chapter
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5. These problems were in addition singular and posed on a semi-infinite interval. Since
bvpsuite offers an asymptotically correct error estimate, we are able to assess the accu-
racy of our results.
From the experiences we made in the course of this work we want to point out that the
applicability of a certain method to solve eigenvalue problems arising in ordinary differ-
ential equations depends significantly on the problem type. However, matrix methods
show advantageous properties that seem relevant in applications for Schrödinger eigen-
value problems.
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