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Abstract. An efficient and accurate numerical method is presented for the solution of highly
oscillatory differential equations. While standard methods would require a very fine grid to resolve the
oscillations, the presented approach uses first an analytic (second order) WKB-type transformation,
which filters out the dominant oscillations. The resulting ODE is much smoother and can hence be
discretized on a much coarser grid, with significantly reduced numerical costs.

In many practically relevant examples, the method is even asymptotically correct w.r.t. the small
parameter ε that identifies the oscillation wave length. Indeed, in these cases, the error then vanishes
for ε → 0, even on a fixed spatial mesh. Applications to the stationary Schrödinger equation are
presented.
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1. Introduction. This paper deals with an asymptotically correct scheme for
the numerical solution of highly oscillating differential equations of the type

ε2ϕ′′(x) + a(x)ϕ(x) = 0 ,(1.1)

where 0 < ε ≪ 1 is a very small parameter and a(x) ≥ a0 > 0 a sufficiently smooth
function. For very small ε > 0, the wave length λ = 2πε√

a(x)
is very small, such that

the solution ϕ becomes highly oscillating. In a classical ODE–scheme such a situation
requires a very fine mesh in order to accurately resolve the oscillations, typically at
least 10 grid points per oscillation. Hence, standard numerical methods would be very
costly and inefficient here. The goal of this paper is to present a new method that
uses a coarse spatial grid with step size h > λ (see Figure 1.1).

Problems that require the numerical integration of highly oscillatory equations
play an essential role in a wide range of physical phenomena: electromagnetic and
acoustic scattering (Maxwell and Helmholtz equations in the high frequency regime),
wave evolution problems in quantum and plasma physics (Schrödinger equation in
the semi-classical regime), stiff mechanical systems, and so on. Due to the high
oscillations, these problems render the mathematical analysis and computation very
challenging.

The application we are interested in here is the numerical solution of the stationary
1D Schrödinger equation





−ε2ψ′′

E(x) + V (x)ψE(x) = EψE(x) , x ∈ (0, 1) ,

ψ′

E(0) + ik(0)ψE(0) = 0 ,

ψ′

E(1)− ik(1)ψE(1) = −2ik(1) .

(1.2)

∗Institut für Analysis und Scientific Computing, Technische Universität Wien, Wiedner Hauptstr.
8, A-1040 Wien, Austria (anton.arnold@tuwien.ac.at).
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Fig. 1.1. In standard numerical methods highly oscillating solutions require a very fine mesh
to capture the oscillations. However, with the analytic pre-processing of our method an accurate
solution can be obtained on a coarse grid (dots). Plotted is the solution ℜϕ(x) of (1.1) with ε =
0.01, h = 0.125, and a = (x+ 1

2
)2 as in §3.2.

It describes the state of an electron that is injected with the prescribed energy
E from the right boundary (or lead) into an electronic device (diode, e.g.), modeled
on the interval [0, 1]. The corresponding (complex valued) wave function is denoted
by ψE(x), where |ψE(x)|2 is related to the spatial probability density of the electron.
Due to the continuous injection of a plane wave function at x = 1, we cannot expect
|ψE |2 to be normalized here. The small parameter ε is the rescaled Planck constant
and V is the given electrostatic potential. We suppose that E > V (x) all along
the device which characterizes the problematic oscillatory regime. In contrast, the
evanescent regime, i.e. E < V (x), is rather harmless since the solution is then non-
oscillatory, and consequently we are not considering this case in the present work.
The boundary conditions in (1.2) are the so called open or transparent boundary
conditions, permitting an electron wave to enter or leave the device without reflections
[16]. And finally, the wave vector k and the corresponding de Broglie wave-length λ
are given by

k(x) :=

√
E − V (x)

ε
, λ(x) :=

1

k(x)
=

ε√
E − V (x)

.

Solving one single ODE like (1.2) is, of course, no numerical challenge today.
However, a rapid resolution of the Schrödinger equation (1.2) is a crucial element
in the simulation of the electron transport in nanoscale semiconductor devices, like
quantum wave-guides [1], resonant tunneling diodes (RTDs) [3], MOSFETs [20], etc.
In such applications, macroscopic quantities like the electron density n and the current
density j are given by the formulae

n(x) =

∫ ∞

0

f(k)|ψE(k)(x)|2 dk , j(x) = ε

∫ ∞

0

f(k)ℑ(ψE(k)(x)ψ
′

E(k)(x)) dk ,

where f represents the injection statistics of the electrons, described by the Fermi-
Dirac or the Boltzmann distribution function. Thus, the Schrödinger equation (1.2)
has to be solved many times (once per injection energy E) in order to compute the
macroscopic quantities n and j. In fact, one needs here a very fine grid in E, since
the transition probability for the electrons through the device is very peaked w.r.t. E
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(cf. [3]). Hence, efficient methods for the solution of (1.2) will lead to a considerable
gain in the simulation time.

In order to put into perspective the numerical method proposed in §2, we first
review the well-known WKB-approximation (cf. [15]) for the singularly perturbed
ODE (1.1). The WKB-ansatz

ϕ(x) = exp

(
1

ε

∞∑

p=0

εpφp(x)

)
,(1.3)

inserted in (1.1), leads after comparison of the εp-terms to

φ0(x) = ±i
∫ x

0

√
a(τ) dτ+const. ,

φ1(x) = ln a(x)−1/4 + const. ,

φ2(x) = ∓i
∫ x

0

β(τ) dτ+const. , β := − 1

2a1/4
(a−1/4)′′ .

The derivation of adiabatic integrators in [17] (cf. also §XIV of [5]) is closely related
to using the zeroth order WKB-approximation ϕ(x) ≈ C exp

(
± i

ε

∫ x

0

√
a dτ

)
to elim-

inate the dominant oscillations. After transformation, the resulting less oscillatory
(“adiabatic”) variables were approximated numerically. A localized variant of this
transformation is also the background for the modified Magnus method for (1.1), de-
veloped in §5 of [9].

Truncating the Ansatz (1.3) after p = 1 yields the asymptotic approximation

ϕ(x) ≈ C
exp

(
± i

ε

∫ x

0

√
a dτ

)

4
√
a(x)

,(1.4)

which is the basis to construct a WKB-finite element scheme for (1.1) in [19, 20].
While that FEM required a non-resonance condition on h, our new method is valid
without any such restriction. Using the first order WKB-approximation (1.4) to
transform (1.1) into a smoother problem was also mentioned in §2.6 of [17], but it
was not pursued there numerically.

In the sequel we shall use the following notation involving the “small parameters”
ε and h:

Definition 1.1. Let f be a complex valued function, and g a real valued function
of the two varables ε and h. We then say that f = Oε,h(g) , iff there exists a constant
C, such that |f(ε, h)| ≤ Cg(ε, h), ∀ 0 < ε, h ≤ 1.

We remark that this notation shall be used not only for ε, h sufficiently small,
but indeed for all 0 < ε, h ≤ 1. For functions of just one variable, we use the standard
notation O(εγ) and O(hγ) for ε→ 0 and h→ 0, resp.

Our method below is related to a second order WKB-approximation (i.e. trunca-
tion of the Ansatz (1.3) after p = 2), which uses the refined asymptotics

ϕ(x) ≈ C
exp

(
± i

εφ(x)
)

4
√
a(x)

, φ(x) :=

∫ x

0

(√
a(τ)− ε2β(τ)

)
dτ .(1.5)

Let us briefly sketch our strategy. It is closely related to the procedure in [17],
but yields a refinement to higher ε–order:
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1. Analytic pre-processing of (1.1) by a second order WKB-transformation of
the form (1.5). The equation (1.1) is transformed into a smoother problem that can
be solved accurately and efficiently on a coarse grid (see Fig. 1.1).

2. ε–uniform discretization of the oscillatory integral
∫
β(y) exp

(
2i
ε φ(y)

)
dy

(and multiple iterates of it) appearing in the numerical scheme for the transformed,
smoother problem (cf. (2.6) below).

3. Numerical integration of the phase φ(x) in (1.5). Assume that a quadrature
rule (Gaussian or Chebyshev, e.g.) introduces numerical errors of the order O(hγ)
in the phase-computation, where γ > 0 is related to the number of intermediate
quadrature points (for each h-interval). This will typically induce Oε,h(h

γ/ε) errors
in the oscillatory integral. However, this phase integral can be computed explicitly in
several relevant examples (e.g. RTDs). But even then, machine precision round-off
errors will also introduce “small” O(1/ε) errors.

In [17] the oscillatory integral is dealt with by first using a Taylor expansion of β
and φ, followed by an integration by parts. But recently, quite refined techniques for
the quadrature of oscillatory integrals were developed. The goal of the methods in [10,

18, 21] is to provide approximations for
∫ x+h

x
β(y) exp

(
2i
ε φ(y)

)
dy of arbitrarily high

ε–order. But for solving oscillatory ODEs there are of course additional requirements:
The local discretization error must also be of sufficiently high h–order. Therefore let us
first discuss, under this perspective, the existing techniques. The asymptotic method
[10, 21] provides approximations of arbitrarily high ε–order. But since it does not yield
high h–orders (cf. §2.2 for details), it is not usable for constructing ODE schemes. In
Filon-type quadrature [10, 18], the oscillatory integral is approximated by integrals∫ x+h

x
π(y) exp

(
2i
ε φ(y)

)
dy, where π is a polynomial interpolation of β, assuming that

the resulting moment integrals can be evaluated exactly. Since this is not the case
here, Filon-type quadrature would not apply to our situation. In the moment free
Levin-type methods [21, 22], the function β in the oscillatory integral is approximated
(Hermite interpolation) by a function L[v](y) := v′+ 2i

ε φ
′v. Then the resulting integral

can be evaluated exactly. With growing interpolation order, the error has increasing
orders of εh. Hence, this method would appear suitable for oscillatory ODEs. But
–to the authors’ knowledge– it has not been used yet. In §2.2 we shall present a new
variant of the asymptotic method that trades ε–powers into h–powers. The idea is
to subtract from the oscillatory term exp

(
2i
ε φ(y)

)
of the integrand a trigonometric

polynomial of the phase φ (which is appropriately compensated in the integration by
parts). This procedure creates zeros in the integrand and increases the h–order of the
error.

Standard methods for (1.1) (like in [7, 8]) used to require a step size h = O(ε)
for accurate resolution. With a zeroth order WKB-transformation, the second order
2-step scheme of [17] reduces that limitation to h = O(

√
ε). With the choice γ = 4

(Simpson rule) our second order 1-step scheme has, in general, the same h-limitation
(see Theorem 3.1). But for explicitly integrable phases, h can be chosen independently
of ε in our scheme.

This asymptotic correctness w.r.t. ε is an additional novel feature of our scheme:
RTD-models typically have piecewise linear potentials. Hence, the phase function φ
in (1.5) can be integrated exactly. As a consequence, the numerical error decreases to
zero as ε → 0, even when using a fixed step size h > 0. Hence, the scheme with e.g.
just 2 grid points on [0, 1] becomes asymptotically correct in the highly oscillatory
limit, which was a-priori the most difficult scenario.
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We remark that the basic “philosophy” of this asymptotic correctness is closely
related to relaxation schemes or asymptotic preserving schemes. These numerical
schemes are developed for PDE-families that involve a small parameter ε, and they
stay uniformly accurate also in the scaling limit ε→ 0. Examples include the diffusive
limits of kinetic equations [13], kinetic to fluid dynamical limits [14], and the semi-
classical limit of the time dependent Schrödinger equation [4].

This paper is organized as follows. In Section 2 we present the numerical method
for solving the highly oscillating equation (1.1). In §3.1 the convergence of the numer-
ical scheme is analyzed and the main result of this paper is stated in Theorem 3.1.
The advantages of the introduced methods and their (ε, h)–dependent error behavior
are illustrated on a numerical example in §3.2. In §3.3 we add a refined error analy-
sis to illustrate possible cancellation effects in the error accumulation for oscillatory
problems. And we conclude in §4.

2. Description of the method. The objective of this paper is to solve effi-
ciently the following highly oscillating initial value problem (IVP):





ε2ϕ′′(x) + a(x)ϕ(x) = 0 , x ∈ (0, 1) ,

ϕ(0) = ϕ0 ,

εϕ′(0) = ϕ1 .

(2.1)

Here we are concerned with the scalar problem, with possibly complex valued ini-
tial conditions. The more technical vector valued situation will be addressed in a
subsequent work.

To make the connection with our application presented in the introduction, we
can put

a(x) = E − V (x) , ϕ0 = 1 , ϕ1 = −i
√
a(0) ,

where E can be considered as fixed and 0 < ε < 1 as arbitrarily small. The solution
ϕ of the IVP (2.1) and that one of the BVP (1.2) are then related by

ψE(x) = − 2ik(1)

ϕ′(1)− ik(1)ϕ(1)
ϕ(x) .

The existence of a solution to problem (2.1) is stated in the following proposition.
Proposition 2.1. [2, 19] Let a ∈W 1,∞(0, 1) be a given real function, satisfying

a(x) ≥ a0 > 0 in [0, 1] and let 0 < ε < 1 be fixed. Then the Schrödinger equation
(2.1) admits a unique solution ϕ ∈W 2,∞(0, 1) verifying

||ϕ||L∞(0,1) ≤ C , ||εϕ′||L∞(0,1) ≤ C , ||ε2ϕ′′||L∞(0,1) ≤ C ,

with a constant C > 0 independent of ε.
This predicted oscillatory behavior of ϕ can be observed in Figure 2.1 (left) for

two different ε-values.
We shall now introduce an efficient numerical method for solving (2.1). The idea

is to first reformulate the oscillatory problem in order to get a new equation with
“smoother” unknowns. This is the objective of Section 2.1. Then, this new problem
can be solved numerically on a coarse grid (in §2.2). The originality of this procedure is
that one fixed grid, independent of the wave-length ε/

√
a(x), can be used to solve the

“smooth” equation accurately, permitting thus a considerable gain in computational
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costs.
For simplicity only, we shall suppose all along this paper that a is smooth enough.
Note, however, that piecewise smoothness of a would be enough. At discontinuities
of a, the IVP could just be “restarted”.

Hypothesis A Let a ∈ C∞[0, 1] be a fixed smooth (real valued) function, sat-
isfying a(x) ≥ a0 > 0 in [0, 1], which means that we are in the oscillatory regime.
Besides, let 0 < ε < 1 be an arbitrary real number.

2.1. Reformulation of the continuous problem. The first step in our refor-
mulation is to pass from the second order differential equation (2.1) to a system of
first order differential equations. Motivated by the form of (1.5) we set

U(x) =

(
u1

u2

)
:=




a1/4ϕ(x)

ε(a1/4ϕ)′(x)√
a(x)


 ,

we have





U ′(x) =

[
1

ε
A0(x) + εA1(x)

]
U(x) , 0 < x < 1

U(0) = UI ,

(2.2)

with the two matrices

A0(x) =
√
a(x)

(
0 1
−1 0

)
; A1(x) =

(
0 0

2β(x) 0

)
,

where

β = − 1

2a1/4
(a−1/4)′′ .

Note that in (2.2) the matrix 1
εA0 = O(ε−1) is dominant and gives rise to the highly

oscillatory part in the solution. On the other hand, εA1 is a small O(ε)–perturbation.
In contrast, [17] uses Ũ(x) := (ϕ(x), εϕ′(x)/

√
a(x))⊤ to transform (2.1) to a first

order system. And this results in an O(1)–perturbation of the dominant matrix
1
εA0(x).

Proposition 2.1 implies the existence of a unique solution U ∈ (W 1,∞(0, 1))2 of
(2.2), satisfying

||U ||L∞(0,1) ≤ C ; ||U ′||L∞(0,1) ≤
C

ε
,(2.3)

with a constant C > 0 independent of ε.
As a second step we diagonalize now the dominant part of the system (2.2) by

performing the change of variable

Y (x) := PU(x) ,

where

P :=
1√
2

(
i 1
1 i

)
; P−1 =

1√
2

(
−i 1
1 −i

)
.
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Fig. 2.1. Left: solution ℜϕ(x) of (2.1) for 2 values of ε. Right: solution ℜz1(x) of (2.6). The
simulation is performed for the same potential a = (x+ 1/2)2 as in §3.2.

The equation for Y reads




dY

dx
=
i

ε
DεY + εNY , 0 < x < 1 ,

Y (0) = YI ,

(2.4)

with

Dε(x) =

(
Dε

1(x) 0
0 Dε

2(x)

)
=

( √
a− ε2β 0

0 −√
a+ ε2β

)
; N(x) = β(x)

(
0 1
1 0

)
.

Again, the matrix i
εD

ε gives rise to highly oscillatory solutions, while εN is a small
perturbation.

In our final transformation step we eliminate the leading oscillations by defining
the diagonal matrix

Φε(x) :=

∫ x

0

Dε(y) dy =

(
φε 0
0 −φε

)
,

with the (real valued) phase function

φε(x) :=

∫ x

0

(√
a(τ)− ε2β(τ)

)
dτ .(2.5)

Note that this is precisely the phase in the second order WKB-approximation (1.5).
Making the change of unknown

Z(x) =

(
z1

z2

)
:= exp

(
− i

ε
Φε(x)

)
Y (x) ,

leads to the system




dZ

dx
= εNεZ , 0 < x < 1 ,

Z(0) = ZI = YI .

(2.6)

Here, the matrix

Nε = exp(− i

ε
Φε)N exp(

i

ε
Φε) ,
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is bounded independently of ε. It is off-diagonal, with the entries

Nε
1,2(x) = β(x)e−

2i
ε
φε(x) , Nε

2,1(x) = β(x)e
2i
ε
φε(x) .

Note that, due to our higher order WKB-transformation, the ODE (2.6) has a trivial
limit (for ε → 0): Its solution converges to Z0(x) := ZI (uniformly in x). This limit
is trivial to capture numerically and the core of the above mentioned asymptotic cor-
rectness (w.r.t. ε) of the presented scheme. The importance of recovering numerically
such adiabatic invariants of (2.1) was already mentioned in §3 of [9].
Let us briefly compare this asymptotic behavior of (2.6) to related approaches in the
literature: In §2.5 of [17], e.g., the r.h.s. of the corresponding equation was only O(1)
as ε→ 0, which rendered their final scheme ε–uniformly convergent (but not asymp-
totically correct). However, when basing their scheme on the adiabatically invariant
variables (as mentioned in §2.6 of [17]), it would also be asymptotically correct.

We remark that the concept of super-adiabatic transformations (cf. §XIV.1 in
[5]) has the same goal, i.e. transforming a first order ODE such that the new system
matrix is of the order O(εk) for some k ∈ N. Actually, §XIV.1 is presented for linear
ODE systems with a skew-Hermitian system matrix (which is not the case in (2.2),
e.g.). However, it can easily be extended to diagonalizable system matrices. When

this extended method is applied to (2.1) with Ũ(x) := (ϕ(x), εϕ′(x))⊤, it yields a
transformed system again of form (2.6). However, the resulting system matrix then
is of a much more complex and lenghty form than our formulation (2.6).

The principal idea of this paper is that, instead of solving (2.2) (or (2.1)), we shall
solve numerically (2.6) and recover then the original solution by

U(x) = P−1e
i
ε
Φε(x)Z(x) .(2.7)

In particular this inverse transform of the asymptotic limit ZI = (z1, z2)
⊤ is given by

ϕ(x) =
1√

2 4
√
a(x)

(
−i e i

ε
φε(x)z1 + e−

i
ε
φε(x)z2

)
,

which is a linear combination of the two second order WKB-functions (1.5).
Let us explain in some words the essential advantage of doing so. For small ε, the
function U is highly oscillating, with amplitude of order O(1) as ε→ 0 (see (2.3) and
Figure 2.1). Thus, a very fine grid (e.g. 10 discretization points per wave length) has
to be chosen in order to solve accurately enough the system (2.2). The function Z
is also highly oscillating – approximately with the same frequency as U . But, as a
great advantage, Z oscillates around a smooth function, with an amplitude only of
the order O(ε2) (see (2.10) and Figure 2.1). Hence, if we take a coarse grid with a step
size h ≫ ε (step size superior to the wave-length), then we shall incur at maximum
an error of the order O(ε2) when solving (2.6), whereas for (2.2) the error would be
of the order O(1) as ε→ 0. This is summarized in the following proposition.

Proposition 2.2. Under Hypothesis A, the problem (2.6) admits a unique solu-
tion Z ∈ C∞[0, 1] with the explicit form

Z(x) = ZI +
∞∑

p=1

εpMε
p (x; 0)ZI ,(2.8)
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where the matrices Mε
p , p ≥ 1 are given by

Mε
p (η; ξ) =

∫ η

ξ

∫ y1

ξ

· · ·
∫ yp−1

ξ

Nε(y1) · · ·Nε(yp) dyp · · · dy1 ,

Mε
p (η; ξ) =

∫ η

ξ

Nε(y)Mε
p−1(y; ξ) dy , Mε

0 = Id .
(2.9)

Moreover we have the estimates

||Z − ZI ||L∞(0,1) ≤ Cε2 , ||Z ′||L∞(0,1) ≤ Cε , ||Z ′′||L∞(0,1) ≤ C ,(2.10)

with a constant C > 0 independent of ε.

Proof. Integrating the equation for Z, (2.6), over the interval (ξ, η) we find

Z(η) = Z(ξ) + ε

∫ η

ξ

Nε(y1)Z(y1) dy1

= Z(ξ) + ε

(∫ η

ξ

Nε(y1) dy1

)
Z(ξ) + ε2

∫ η

ξ

Nε(y1)

∫ y1

ξ

Nε(y2)Z(y2) dy2 dy1

= Z(ξ) +
∞∑

p=1

εpMε
p (η; ξ)Z(ξ),

(2.11)
with Mε

p defined in (2.9). In order to show the convergence of this series, as well as
the estimate (2.10), we shall estimate the terms Mε

p . Let us start with Mε
1 and the

two representations:

mε
1(η; ξ) := (Mε

1 (η; ξ))2,1 = (Mε
1 (η; ξ))1,2

=

∫ η

ξ

β(y)e
2i
ε φε(y) dy = −iεβ0(y)e

2i
ε
φε(y)

∣∣∣
η

ξ
+ iε

∫ η

ξ

β′

0(y)e
2i
ε
φε(y)dy ,(2.12)

where

β0(y) :=
β

2φ′
(y) =

β

2(
√
a− ε2β)

(y) .

Note that (2.5) and Hypothesis A imply the following estimates (uniform in 0 < ε ≤ ε0
for some ε0 sufficiently small)

‖β‖L∞(0,1) ≤ B ; ‖β0‖L∞(0,1) ≤ B0 ; ‖β′

0‖L∞(0,1) ≤ B1 .(2.13)

Then (2.12) implies

‖Mε
1 (η; ξ)‖∞ ≤ min (B|η − ξ| , ε[2B0 +B1|η − ξ|]) ,

where ‖.‖∞ denotes the ∞–matrix norm in C
2×2. Note that the ε–order in the second

term is due to Nε being oscillating at the frequency 1
ε . From (2.9) we then obtain

the estimate for each p ≥ 1 :

‖Mε
p (η; ξ)‖∞ ≤ Bp−1 |η − ξ|p−1

p!
min (B|η − ξ| , ε[2pB0 +B1|η − ξ|]) , p ≥ 1.

This shows the convergence of (2.8). Also, the terms involved in the expansion of
Z(x)− ZI are at least of the order ε2 which implies the estimates (2.10).
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Corollary 2.3. The matrices Mε
p (η; ξ) involved in the series (2.8) can be esti-

mated as follows:

‖Mε
p (η; ξ)‖∞ ≤ Bp−1 |η − ξ|p−1

p!
min (B|η − ξ| , ε[2pB0 +B1|η − ξ|]) , p ≥ 1,(2.14)

with B, B0, B1 positive constants given in (2.13). Hence, we have for fixed p ≥ 1

Mε
p (ξ + h; ξ) = Oε,h(h

p−1 min(ε, h)) .

To summarize, the solution U of the initial problem (2.2) is highly oscillating for
ε ≪ 1. Standard methods would therefore require to use very fine meshes. Here, we
will solve instead the reformulated problem (2.6) and transform back to the original
variable U via (2.7). As will be seen in Section 3, this procedure allows to use coarser
grids (h > ε), leading to a considerably gain in simulation time.

2.2. Numerical discretization of the transformed problem. The aim of
this section is to introduce a first order and a second order scheme to solve the IVP





dZ

dx
= εNεZ , 0 < x < 1 ,

Z(0) = ZI .

(2.15)

Since Nε is highly oscillatory, we shall pay attention to the ε–uniform discretization of
the oscillatory integrals. Let 0 = x1 < · · · < xn < · · · < xN = 1 be a discretization of
the interval (0, 1) and h := maxn=1,···,N−1 |xn+1−xn|. In the following, for simplicity,
we shall often denote the cell In := (xn, xn+1) simply by (ξ, η), i.e. ξ = xn and
η = xn+1.

In order to design a scheme of order P in the step size h, we shall start from the
formula (2.8) (limit of Picard iteration)

Z(η) = Z(ξ) +

∞∑

p=1

εpMε
p (η; ξ)Z(ξ) ,(2.16)

and proceed in two steps.
Step 1: First we truncate the series (2.16) at order P , the remainder being of the

order εP+1hP min(ε, h). Indeed, due to (2.14)

||
∞∑

p=P+1

εpMε
p (η; ξ)||∞ ≤ C

BP

(P + 1)!
εP+1hP min(hB, ε(P + 1)) .(2.17)

For each fixed ε this will lead to a scheme of order P w.r.t. the step size h.
Step 2: Since the highly oscillating integrals Mε

p cannot be computed exactly,
we shall make another approximation. Here, it is our goal to incur an additional
discretization error of the same order as in Step 1 (which is not always possible).
Anyhow, the error will decay as ε→ 0. As usual for oscillatory integrals, our approx-
imation will rely on integrations by parts. But since we are dealing here with two
small parameters, two different expansions of Mε

p are possible: The expansion w.r.t.
h permits to increase the error order in h, and the ε–expansion the error order in
ε. But the error term from Step 1 has a mixed order in h and ε. Thus, we need to
combine the two mentioned expansions. In the sequel we present this procedure for
Mε

1 and Mε
2 .
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h–expansion of Mε
1 . Using the notation in the proof of Prop. 2.2 we compute

mε
1(η; ξ) = (Mε

1 (η; ξ))2,1 =

∫ η

ξ

β(y)e
2i
ε φ(y) dy = e

2i
ε
φ(ξ)

∫ η

ξ

β(y)e
2i
ε
(φ(y)−φ(ξ))dy

= − (iε) e
2i
ε
φ(ξ)

∫ η

ξ

β

2φ′
(y)

d

dy

(
e

2i
ε
(φ(y)−φ(ξ)) − 1

)
dy

= −(iε)e
2i
ε
φ(ξ)

{[
β0(y)H1

(
2

ε
(φ(y)−φ(ξ))

)]η

ξ

−
∫ η

ξ

β′

0(y)H1

(
2

ε
(φ(y)−φ(ξ))

)
dy

}

= −(iε)e
2i
ε
φ(ξ)

{
β0(η)H1

(
2

ε
(φ(η)−φ(ξ))

)
+ iε

∫ η

ξ

β1(y)H2

(
2

ε
(φ(y)−φ(ξ))

)′

dy

}

= −(iε)e
2i
ε
φ(ξ)

{
β0(η)H1

(
2

ε
(φ(η)−φ(ξ))

)
+ iεβ1(η)H2

(
2

ε
(φ(η)−φ(ξ))

)}

+Oε,h(h
2 min(ε, h)) ,

(2.18)
where

Hk(η) := eiη −
k−1∑

p=0

(iη)p

p!
,

β0(y) :=
β

2φ′
(y) =

β

2(
√
a− ε2β)

(y); βk+1 :=
1

2φ′(y)

d

dy
(βk) (y).

The key idea in (2.18) is to shift the oscillatory factor exp
(
2i
ε φ(y)

)
by -1 to create a

zero in [ξ, η]. And this increases the h–order of the remainder in each integration by
parts. Continuing iteratively we obtain the asymptotic expansion (w.r.t. h)

mε
1(η; ξ) ∼ −

∞∑

k=1

(iε)ke
2i
ε
φ(ξ)βk−1(η)Hk

(
2

ε
(φ(η)− φ(ξ))

)
.(2.19)

But just as in §3.1 of [10], the series (2.19) might not converge.

Note that (2.5) and Hypothesis A imply φ′(x) ≥ φ0 > 0 for ε sufficiently small. Hence,
the phase φ has no stationary point and ‖βk‖L∞(0,1) is uniformly bounded w.r.t. small
ε. Since

Hk(η) = O(min(ηk, ηk−1)) ,(2.20)

the kth term of the expansion of mε
1 is of the order hk−1 min(ε, h) (due to the k–th

order zero of Hk at η = 0). Keeping only the first term yields an error for mε
1(η; ξ)

of order hmin(ε, h), thus producing an order 1 scheme (uniformly in ε). Keeping the
first two terms yields an error of order h2 min(ε, h), thus producing an order 2 scheme
(uniformly in ε).

ε–expansion of Mε
1 . The asymptotic method for oscillatory integrals (cf. §2 of
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[10], §2 of [21]) yields a slightly different expansion of mε
1:

mε
1(η; ξ) = −(iε)

[
β0(y)e

2i
ε
φ(y)

]η
ξ
− (iε)2

[
β1(y)e

2i
ε
φ(y)

]η
ξ
+ (iε)2

∫ η

ξ

β′

1(y)e
2i
ε
φ(y) dy

∼ −
∞∑

k=1

(iε)k
[
βk−1(η)e

2i
ε
φ(η) − βk−1(ξ)e

2i
ε
φ(ξ)
]
,

(2.21)
where the kth term in this expansion is of the order εk−1 min(ε, h). In contrast to
(2.18), this expansion yields higher ε–orders with each integration by parts.

Mixed ε–h–expansion of Mε
1 . In order to design a first order scheme for

(2.15), we recall from Step 1 (with P = 1) that

Z(xn+1) = Z(xn) + εMε
1 (xn+1;xn)Z(xn) + γn , with γn = Oε,h(ε

2hmin(ε, h)) .

The idea is now to derive a mixed expansion of Mε
1 (xn+1;xn) that reduces the con-

sistency error to the same magnitude as γn (i.e. Oε,h(εhmin(ε, h)) for mε
1(η; ξ)). To

this end we shall first make one step of the standard asymptotic method (2.21). This
increases the ε–power of the error to Oε,h(εmin(ε, h)):

mε
1(η; ξ) =

∫ η

ξ

β(y)e
2i
ε
φ(y) dy = −iε

∫ η

ξ

β0(y)
[
e

2i
ε
φ(y)

]′
dy

= −iε
[
β0(y)e

2i
ε
φ(y)

]η
ξ
+ iε

∫ η

ξ

β′

0(y)e
2i
ε
φ(y)dy

= −iε
[
β0(y)e

2i
ε
φ(y)

]η
ξ
+ T ε

1 (η, ξ) .

(2.22)

Next we make one step of the “shifted asymptotic method” (2.18). This increases the
order of the method w.r.t. h. Indeed,

T ε
1 (η, ξ) = iε

∫ η

ξ

β′

0(y)e
2i
ε
φ(y)dy = −(iε)2e

2i
ε
φ(ξ)

∫ η

ξ

β1(y)
[
e

2i
ε
(φ(y)−φ(ξ)) − 1

]′
dy

= −(iε)2e
2i
ε
φ(ξ)

[
β1(y)H1

(
2
ε (φ(y)− φ(ξ))

)]η
ξ
+Oε,h(εhmin(ε, h)) .

(2.23)
And this will lead to a consistency error for Z of the order Oε,h(ε

2hmin(ε, h)). We
remark that reversing the order of the two above expansion steps would not yield the
desired error order.

With the above ingredients we shall now introduce the first order scheme for
solving the reformulated equation (2.6) in the unknown Z.

First order scheme. Let Z1 := ZI be the initial condition and let n =
1, · · · , N − 1.

Zn+1 = (I +A1
n)Zn ,(2.24)



WKB-BASED SCHEMES FOR THE OSCILLATORY 1D SCHRÖDINGER EQUATION 13

with the 2× 2 matrix

A1
n := ε3β1(xn+1)

(
0 e−

2i
ε
φ(xn)H1(− 2

εSn)

e
2i
ε
φ(xn)H1(

2
εSn) 0

)

−iε2
(

0 β0(xn)e
−

2i
ε
φ(xn) − β0(xn+1)e

−
2i
ε
φ(xn+1)

β0(xn+1)e
2i
ε
φ(xn+1) − β0(xn)e

2i
ε
φ(xn) 0

)
,

(2.25)
and the phase increments

Sn := φ(xn+1)− φ(xn) =

∫ xn+1

xn

(√
a(τ)− ε2β(τ)

)
dτ.

We remark that finite truncations of the asymptotic expansion (2.19) do not preserve
the original skew-symmetry of mε

1(η; ξ) w.r.t. interchanging η and ξ. If this property
of the approximation is desirable, it is easily recovered by rather extracting the factor

exp
(

2i
ε φ(

ξ+η
2 )
)
in the first step of (2.18) instead of exp

(
2i
ε φ(ξ)

)
. This will however

only intricate the formulae without improving them, such that we shall not pursue
this direction in the following.

To construct a second order scheme for (2.15), we truncate (2.16) at P = 2, which
yields

Z(xn+1) = Z(xn) +
[
εMε

1 (xn+1;xn) + ε2Mε
2 (xn+1;xn)

]
Z(xn) + θn , with

θn = Oε,h(ε
3h2 min(ε, h)) .(2.26)

Proceeding similarly as for the construction of the first order scheme, we shall improve
the expansion of Mε

1 (xn+1;xn) and approximate Mε
2 (xn+1;xn) in such a manner,

that we get a consistency error of the same magnitude as θn. That means an error
for Mε

1 (xn+1;xn) of the order Oε,h(ε
2h2 min(ε, h)) and for Mε

2 (xn+1;xn) of the order
Oε,h(εh

2 min(ε, h)).
Higher order expansion of Mε

1 . For the improved expansion of Mε
1 we shall

perform 2 steps of the standard asymptotic method (2.21) and then 2 steps of the
“shifted asymptotic method” (2.18) (in this order!). This yields

mε
1(η; ξ) = (Mε

1 (η; ξ))2,1 =

∫ η

ξ

β(y)e
2i
ε
φ(y) dy

= −iε
[
β0(y)e

2i
ε
φ(y)

]η
ξ
− (iε)2

[
β1(y)e

2i
ε
φ(y)

]η
ξ
+ T ε

2 (η, ξ) .

(2.27)

T ε
2 (η, ξ) = (iε)2

∫ η

ξ

β′

1(y)e
2i
ε
φ(y)dy

= −(iε)3e
2i
ε
φ(ξ)

∫ η

ξ

β2(y)
[
e

2i
ε
(φ(y)−φ(ξ)) − 1

]′
dy

= −(iε)3e
2i
ε
φ(ξ)

{[
β2(y)H1

(
2

ε
(φ(y)− φ(ξ))

)]η

ξ

+ iε

[
β3(y)H2

(
2

ε
(φ(y)− φ(ξ))

)]η

ξ

}

+ Oε,h(ε
2h2 min(ε, h)) .

(2.28)
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Expansion of Mε
2 . We have

Mε
2 (η; ξ) =

∫ η

ξ

Nε(y)Mε
1 (y; ξ) dy,

such that we shall first use the expansion (2.22), (2.23) of Mε
1 to approximate Mε

2 .
Since Nε and Mε

1 are off-diagonal, the Mε
2 -matrix is diagonal and the entries are

conjugate of one another. Thus we will only study the term mε
2 = (Mε

2 )1,1.

mε
2(η; ξ) =

∫ η

ξ

Nε
1,2(y)(M

ε
1 )2,1(y; ξ) dy

=

∫ η

ξ

β(y)e−
2i
ε
φ(y)

{
(−iε)

[
β0(x)e

2i
ε
φ(x)

]y
ξ

−(iε)2e
2i
ε
φ(ξ)

[
β1(x)H1

(
2

ε
(φ(x)− φ(ξ))

)]y

ξ

+Oε,h(εhmin(ε, h))
}
dy

= −iε
∫ η

ξ

β(y)β0(y)dy + iεβ0(ξ)e
2i
ε
φ(ξ)

∫ η

ξ

β(y)e−
2i
ε
φ(y)dy

−(iε)2e
2i
ε
φ(ξ)

∫ η

ξ

β(y)β1(y)e
−

2i
ε
φ(y)H1

(
2

ε
(φ(y)− φ(ξ))

)
dy

+ Oε,h(εh
2 min(ε, h))

= I1 + I2 + I3 +Oε,h(εh
2 min(ε, h)) ,

(2.29)
where

I1 := −iεη − ξ

2
[β(η)β0(η) + β(ξ)β0(ξ)] +Oε,h(εh

3) ,

I2 := −ε2β0(ξ)
[
β0(η)H1

(
2

ε
(φ(ξ)− φ(η))

)
− iεβ1(η)H2

(
2

ε
(φ(ξ)− φ(η))

)]

+Oε,h(εh
2 min(ε, h)) ,

I3 :=

[
−iε3β0(y)β1(y)H2

(
2

ε
(φ(ξ)− φ(y))

)]η

ξ

+Oε,h(εh
2 min(ε, h)) .

(2.30)

For I2 we used the expansion (2.18) of mε
1. Since the integral ε

∫ η

ξ
β(y)β0(y)dy is

not oscillatory, we can approximate mε
2 only up to an error of the order Oε,h(εh

3).
Thus, we cannot attain here the desired order Oε,h(εh

2 min(ε, h)). Nevertheless, the
resulting scheme will be second order and asymptotically correct for ε→ 0.

With these ingredients the second order scheme can now be introduced.

Second order scheme. Let Z1 := ZI be the initial condition and let
n = 1, . . . , N − 1.

Zn+1 = (I +A1
mod,n +A2

n)Zn ,(2.31)
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with the matrices

A1
mod,n :=

−iε2



0 β0(xn)e
−

2i
ε
φ(xn) − β0(xn+1)e

−
2i
ε
φ(xn+1)

β0(xn+1)e
2i
ε
φ(xn+1) − β0(xn)e

2i
ε
φ(xn) 0




+ε3




0 β1(xn+1)e
−

2i
ε
φ(xn+1) − β1(xn)e

−
2i
ε
φ(xn)

β1(xn+1)e
2i
ε
φ(xn+1) − β1(xn)e

2i
ε
φ(xn) 0




+iε4β2(xn+1)




0 −e− 2i
ε
φ(xn)H1(− 2

εSn)

e
2i
ε
φ(xn)H1(

2
εSn) 0




−ε5β3(xn+1)




0 e−
2i
ε
φ(xn)H2(− 2

εSn)

e
2i
ε
φ(xn)H2(

2
εSn) 0




(2.32)

A2
n := −iε3(xn+1 − xn)

β(xn+1)β0(xn+1) + β(xn)β0(xn)

2

(
1 0
0 −1

)

−ε4β0(xn)β0(xn+1)




H1(−
2

ε
Sn) 0

0 H1(
2

ε
Sn)




+iε5β1(xn+1)[β0(xn)− β0(xn+1)]




H2(−
2

ε
Sn) 0

0 −H2(
2

ε
Sn)


 .

(2.33)

In this schemes we assumed that the function β (which involves the derivatives a′, a′′)
is explicitly “available”. Alternatively, a′ and a′′ could be approximated numerically.
In order to compute now the solution of (2.2) and thus get the wave function ϕ as
well as its derivative ϕ′, we have to transform back via

Yn = e
i
ε
Φε(xn)Zn , Un = P−1Yn , n = 1, ..., N .(2.34)

We shall now discuss if these two schemes preserve the current conservation prop-
erty of problem (2.1). In the continuous case the current density satisfies

j(x) := εℑ(ϕ(x)ϕ′(x)) = − 1

2i
U(x)⊤

(
0 1
−1 0

)
U(x)

= − 1

2i
Z(x)⊤e

i
ε
Φε(x)P−1

(
0 1
−1 0

)
Pe−

i
ε
Φε(x)Z(x)

=
1

2
Z(x)⊤

(
1 0
0 −1

)
Z(x) ,

(2.35)

which is constant along the domain (0, 1) due to (2.6). Analogously we have on the
discrete level

jn :=
1

2
Z⊤

n

(
1 0
0 −1

)
Zn , 1 ≤ n ≤ N .(2.36)
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As we shall see in Proposition 3.3, the above schemes do not keep the discrete current
perfectly constant, but only up to a small error of the order Oε,h(ε

2(min(ε, h))2).
In Section 3 we first analyze the convergence of the first order scheme (2.24),

(2.25), (2.34) and of the second order scheme (2.31)–(2.34). Then we shall present
numerical results obtained with the above schemes, including a check on the (almost)
preservation of the current (2.36).

3. Error analysis and numerical results.

3.1. Convergence of the method. The next theorem is the main result of
this paper. Let us denote in the following by Z(x) (resp. U(x)) the exact solution
of the continuous problem (2.6) (resp. (2.2)). And (Zn)

N
n=1 (resp.(Un)

N
n=1) denotes

the numerical approximation of Z(xn) (resp. U(xn)), computed via the first order
scheme (2.24), (2.25), (2.34) or the second order scheme (2.31)–(2.34) presented in
Section 2.2. Then we have the following error estimates:

Theorem 3.1. Let Hypothesis A be satisfied. Then the global errors of the first
order scheme (2.24), (2.25) satisfies

||Z(xn)− Zn|| ≤ Cε2 min(ε, h) , 1 ≤ n ≤ N ,(3.1)

||U(xn)− Un|| ≤ C
hγ

ε
+ Cε2 min(ε, h) , 1 ≤ n ≤ N .(3.2)

And for the second order scheme (2.31)–(2.33) we have the estimate

||Z(xn)− Zn|| ≤ Cε3h2 , ||U(xn)− Un|| ≤ C
hγ

ε
+ Cε3h2 , 1 ≤ n ≤ N ,(3.3)

with C independent of n, h, and ε. Here, γ > 0 is the order of the chosen numerical
integration method for computing the phase integral

Φε(x) =

∫ x

0

(√
a(τ)− ε2β(τ)

)
dτ

(
1 0
0 −1

)
.(3.4)

The discretization step size is h > 0, and ‖.‖ denotes any vector norm in C
2.

Proof. Both schemes can be written under the form

Zn+1 = (I +Bk
n)Zn ; k = 1, 2 ,(3.5)

where B1
n = A1

n (first order scheme) and B2
n = A1

mod,n + A2
n (second order scheme).

With (2.20) we have

A1
n = Oε,h(εmin(ε, h)) , A1

mod,n = Oε,h(εmin(ε, h)) , A2
n = Oε,h(ε

3h) .(3.6)

Hence, both schemes are stable, with an ε–independent stability constant.
The consistency error for the first order scheme is given by

en :=
[
εMε

1 (xn+1;xn)−A1
n

]
Z(xn) + γn , γn :=

∞∑

p=2

εpMε
p (xn+1;xn)Z(xn) .(3.7)

The order of magnitude of these terms is given by the construction of A1
n (cf. (2.23))

and by (2.17):

εMε
1 (xn+1;xn)−A1

n = Oε,h(ε
2hmin(ε, h)) , γn = Oε,h(ε

2hmin(ε, h)) .(3.8)
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This proves the assertion (3.1).
For the second order scheme we have

en :=
[
εMε

1 (xn+1;xn) + ε2Mε
2 (xn+1;xn)−B2

n

]
Z(xn) + θn ,

θn :=

∞∑

p=3

εpMε
p (xn+1;xn)Z(xn) ,

where θn = Oε,h(ε
3h2 min(ε, h)) due to (2.17). By the construction of A1

mod,n and A2
n

we deduce from (2.28) and (2.30):

εMε
1 (xn+1;xn) + ε2Mε

2 (xn+1;xn)−B2
n = Oε,h(ε

3h2 min(ε, h)) +Oε,h(ε
3h3)

= Oε,h(ε
3h3) ,

implying for the second order scheme

||Z(xn+1)− Zn+1|| ≤ Cε3h2 , 1 ≤ n ≤ N.(3.9)

To obtain now the initially “desired” solution U of (2.2), we have to transform Z
back into U via (2.34). This may introduce an additional error if the phase-matrix
(3.4) is computed numerically. Indeed,

U(xn+1)− Un+1 = P−1e
i
ε
Φε(xn+1)Z(xn+1)− P−1e

i
ε
Φε

n+1Zn+1

= P−1
{[
e

i
ε
Φε(xn+1) − e

i
ε
Φε

n+1

]
Z(xn+1)

+e
i
ε
Φε

n+1 [Z(xn+1)− Zn+1]
}
.

(3.10)

Thus we have

||U(xn+1)− Un+1|| ≤ C||e i
ε
Φε(xn+1) − e

i
ε
Φε

n+1 || + C||Z(xn+1)− Zn+1|| .(3.11)

The first term on the right hand side of (3.11) is rather unfavorable as it depends on
1
ε . Indeed, if we choose an integration method of order γ to compute the phase Φε

(for example γ = 4 for the Simpson rule), we will have an error with

||e i
ε
Φε(xn) − e

i
ε
Φε

n || ≤ C
hγ

ε
.

And this yields the error estimate (3.2) for U .
Remark 3.2. Theorem 3.1 shows that the back-transformation (2.34) from Z to

U introduces an unsatisfactory error behaving like 1/ε, due to the numerical approxi-
mation of the phase Φε. However, this error term can be avoided in some interesting
applications. For example, RTD-models typically involve a piecewise linear potential
a(x), for which the phase can be integrated exactly.
Let us now study the discrete current conservation of (2.36).

Proposition 3.3. Under Hypothesis A the numerical schemes introduced in §2.2
conserve the discrete current (2.36), up to an error of

|jn+1 − jn| ≤ Cε2(min(ε, h))2 , n = 1, ..., N − 1 ,

which yields jn = jI +Oε,h(ε
2 min(ε, h)) for each n = 2, · · · , N , where

jI := εℑ(ϕ(0)ϕ′(0)) is the initial current.
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Proof. Using the notations B1
n = A1

n (first order scheme) and B2
n = A1

mod,n +A2
n

(second order scheme), we have

jn+1 − jn =
1

2
Z⊤

n

{
(I +Bk

n)
⊤

(
1 0
0 −1

)
(I +B

k

n)−
(

1 0
0 −1

)}
Zn

=
1

2
Z⊤

n (Bk
n)

⊤

(
1 0
0 −1

)
B

k

nZn

= −1

2

[
(Bk

n)12(B
k
n)21 − (Bk

n)11(B
k
n)22

]
Z⊤

n

(
1 0
0 −1

)
Zn

= −1

2

[
|(Bk

n)12|2 − |(Bk
n)11|2

]
jn .

(3.12)

Here we used the above mentioned symmetries of Bk
n, i.e. (B

k

n)12 = (Bk
n)21, (B

k

n)11 =
(Bk

n)22.
Remark 3.4. In the first order scheme (where (B1

n)11 = 0) we see from (3.12)
that the error of the current has a (negative) sign. Hence, the error does not oscillate
around the correct value jI , but rather drifts away slowly (see Fig. 3.2). If perfect
conservation of the discrete current is required in a specific application, one could
easily modify the first order scheme (2.24) as follows:

Z̃n+1 =

(
1− 1

2
|(B1

n)12|2
)−1/2

(I +B1
n)Z̃n .

And the resulting first order scheme still satisfies the convergence estimate of Theorem
3.1.

3.2. Numerical results. We shall present now the numerical results obtained
with the two schemes introduced in Section 2.2. For our numerical tests we chose
a(x) = (x+ 1/2)2, such that the phase

Φε(x) =

∫ x

0

(√
a(τ)− ε2β(τ)

)
dτ

(
1 0
0 −1

)
,

is explicitly computable. Hence, the hγ/ε–term in (3.2) drops and the scheme is
asymptotically correct w.r.t. ε in this example. Thus, even for h = 1 fixed, the error
decays like O(ε3) (cf. Fig. 3.1 and Theorem 3.1). This remarkable behavior is not
shared by most schemes from the literature (recall the discussion on the asymptotic
limit of (2.6) in §2.1).

Figure 3.1 shows the numerical error of the first order scheme (2.24), (2.25) and
the second order scheme (2.31)–(2.33), as a function of the discretization step h,
and for various ε-values. Plotted are the errors in the L2(0, 1)-norm between the
numerical solution and a reference solution, which is computed with the same method
on a very fine grid. As can be observed, the plots seem to conform to the error
estimates of Theorem 3.1. Indeed, one can read from the plots an error of the order
Oε,h(ε

2 min(h, ε)) for the first order scheme and of the order Oε,h(ε
3h2) for the second

order scheme. We remark that the relevant regime is here h < 0.1 since, otherwise,
the given potential a(x) would not be resolved on the grid. Note that, for a significant
range of h– and ε–values, these error curves lie well below the “standard” computer
precision (in our case 10−16 for double precision). In order to exclude round-off errors
here, these computations were carried out in quadruple precision. The error curves
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Fig. 3.1. Absolute error (in the L2(0, 1)–norm and log− log scale) between the computed so-
lution Znum and a reference solution Zref as a function of h and for several ε-values. Left: first
order scheme. Right: second order scheme.

in (Fig. 3.1 left) are not monotone, but show a slight resonance behavior at distinct
values of h. This behavior has already been reported for similar methods (cf. [11]).
In §3.3 we shall give a detailed analysis of this phenomenon, showing that it is not a
significant problem.

In Figure 3.2 we plotted the current drift j(x)− jI for the first order scheme. It
shows that the current is almost conserved (as a function of x) by the scheme.
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Fig. 3.2. Approximate conservation of the current by the first order scheme. Left: j(x) − jI
for one fixed h and ε. Right: Error in current, ||j(.)− jI ||∞ for different step sizes h and different
ε-values.

3.3. Refined error analysis for a simplified first order scheme. The goal
of this section is twofold: We shall present a modified first order scheme for (2.15)
which is simpler than (2.24), (2.25), but also slightly less accurate: cp. Fig. 3.1 (left)
and Fig. 3.3. Moreover we shall sketch a refined error analysis for numerical schemes
like those of §2.2. For the convergence rates obtained in §3.1 we just considered the
consistency error of each numerical step. But for oscillatory problems this may yield
over-conservative error estimates. For such problems the true error accumulation,
however, may exhibit some cancellation phenomena as long as the grid step stays
away from certain “resonant values”. Here, we shall illustrate this phenomenon for
the simplified first order scheme, where the approximation of Mε

1 (in Step 2 of §2.2)
is of lower order than the series truncation in Step 1 of §2.2. Making just one step



20 A. ARNOLD, N. BEN ABDALLAH AND C. NEGULESCU

of the shifted asymptotic method in (2.18) yields the following “modified first order
scheme”. Let Z1 := ZI be the initial condition and let n = 1, · · · , N − 1.

Modified first order scheme.

Zn+1 = Zn + Ã1
nZn,(3.13)

with the 2× 2 matrix

Ã1
n := −iε2β0(xn+1)

(
0 e−

2i
ε
φ(xn) − e−

2i
ε
φ(xn+1)

e
2i
ε
φ(xn+1) − e

2i
ε
φ(xn) 0

)

= −iε2β0(xn+1)

(
0 −e− 2i

ε
φ(xn)H1(− 2

εSn)

e
2i
ε
φ(xn)H1(

2
εSn) 0

)
,

(3.14)

and the notations of Section 2.2. In analogy to §3.1 this scheme satisfies the following
result:

Theorem 3.5. Let Hypothesis A be satisfied. Then the global errors of the
modified first order scheme satisfy

||Z(xn)− Zn||2 ≤ Cεmin(ε, h) ,

||U(xn)− Un||2 ≤ C hγ

ε + Cεmin(ε, h) , 1 ≤ n ≤ N ,
(3.15)

with C independent of h and ε. Here, γ > 0 is again the order of the chosen numerical
integration method for computating of the phase integral

Φε(x) =

∫ x

0

(√
a(τ)− ε2β(τ)

)
dτ

(
1 0
0 −1

)
.(3.16)

The discretization step size is h > 0.
The difference between the first order scheme of Section 2.2 and the modified

first order scheme is the ε-power in the error estimate. Now we continue with the
numerical example from §3.2. Figure 3.3 shows the L2–errors between the computed
solution Znum via (3.13)-(3.14) and a (more accurate) reference solution Zref . Note
that the ε–asymptotics of the error in Figure 3.3 is actually much better (i.e. smaller)
than estimated in Theorem 3.5. Indeed, one can read from the plots an error of the
order Oε,h(ε

2 min(h, 1)) rather than the expected Oε,h(εmin(ε, h)). To understand
this phenomenon we shall analyze in much more detail the error estimate obtained
in Theorem 3.5. Anticipating that analysis, we mention that the improved error
behavior is due to cancellation effects in successive integration steps – at least for
“most” values of h. However, for certain resonant h–values (e.g. h = 2−11, ε = 10−4

or h = 2−14, ε = 10−5) the error is as predicted by Theorem 3.5. Hence, this theorem
seems to be sharp in general, and the smaller-than-expected error makes the simplified
scheme competitive with the first order scheme of §2.2.

Let us now improve the error analysis for the modified first order scheme (3.13)-
(3.14) in order to explain the phenomenon detected in Figure 3.3. With the notations
of Section 3.1 (particularly from the proof of Theorem 3.1) and the usual error prop-
agation in one–step ODE–schemes we obtain

||Z(xn+1)− Zn+1|| ≤ ||
n∑

j=1

[
Πn

l=j+1(I + Ã1
l )
]
ej || , 1 ≤ n < N ,
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Fig. 3.3. Absolute error between the computed solution Znum and a reference solution Zref as
a function of h, for the modified first order scheme.

where ej :=
[
εMε

1 (xj+1;xj)− Ã1
j

]
Z(xj) + γj is the consistency error. From (2.17)

we have

Mε
1 (xn+1;xn)− Ã1

n = Oε,h(εhmin(ε, h)) , γj := Oε,h(ε
2hmin(ε, h)) .(3.17)

In particular we are interested in a refined estimate of the term

Tn := ||
n∑

j=1

[
Πn

l=j+1(I + Ã1
l )
]
(εMε

1 (xj+1;xj)− Ã1
j )Z(xj)|| , 1 ≤ n < N ,

since
∑n

j=1

[
Πn

l=j+1(I + Ã1
l )
]
γj is already of the order Oε,h(ε

2 min(ε, h)). Due to

the fact that Ã1
l = Oε,h(εmin(ε, h)), we can show that Πn

l=j+1(I + Ã1
l ) = I +

Oε,h(Nεmin(ε, h)) = I + Oε,h(ε), where N = 1 + 1/h is the number of grid points.
With (3.17) this yields

Tn ≤ ||
n∑

j=1

(εMε
1 (xj+1;xj)− Ã1

j )Z(xj)|| +Oε,h(ε
2 min(ε, h)) .(3.18)

As Z(x) = ZI +O(ε2), we have

||
n∑

j=1

(εMε
1 (xj+1;xj)−Ã1

j )Z(xj)|| ≤ C||
n∑

j=1

(εMε
1 (xj+1;xj)−Ã1

j )||+Oε,h(ε
3 min(ε, h)) .

Thus, the improvement visible in Figure 3.3 can only come from some cancellation in
the term En :=

∑n
j=1(εM

ε
1 (xj+1;xj)− Ã1

j ). Let us analyze this term in more detail:

(En)21 =

n∑

j=1

(
εMε

1 (xj+1;xj)−Ã1
j

)

21

= iε2
n∑

j=1

e
2i
ε
φ(xj)

∫ xj+1

xj

β′

0(y)H1

(
2

ε
(φ(y)−φ(xj))

)
dy .

A rough estimate will lead at this step to En = Oε,h(εmin(ε, h)), which is exactly
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what we got in Theorem 3.5. But continuing by partial integration leads to

(En)21 = −ε3
n∑

j=1

e
2i
ε
φ(xj)

∫ xj+1

xj

β1(y)H2

(
2

ε
(φ(y)− φ(xj))

)′

dy

= ε3
n∑

j=1

e
2i
ε
φ(xj)

{∫ xj+1

xj

β′

1(y)H2

(
2

ε
(φ(y)− φ(xj))

)
dy − β1(xj+1)H2(

2

ε
Sj)

}

= Oε,h(εhmin(ε, h))− ε3
n∑

j=1

e
2i
ε
φ(xj)β1(xj+1)H2(

2

ε
Sj)

= Oε,h(εhmin(ε, h))− εhmin(ε, h)

n∑

j=1

cje
2i
ε
φ(xj) ,

(3.19)

with some constants cj > 0 bounded independently of N and ε. Thus, the behavior
of (En)21 depends mostly on the term

τ(n; ε, h) :=

n∑

j=1

cje
2i
ε
φ(xj) , 1 ≤ n < N .(3.20)

A cancellation in this term would explain the reduced numerical error as plotted in
Figure 3.3. In the worst case we would have τ = Oε,h(1/h), which occurs in the
example cj = C and φ(xj) = kjπε with some kj ∈ Z. Then, (3.18), (3.19) would lead
to an error of

||Z(xn+1)− Zn+1|| = Oε,h(ε
2 min(ε, h)) +Oε,h(εhmin(ε, h)) +Oε,h(εmin(ε, h))

= Oε,h(εmin(ε, h)) ,

which was asserted in Theorem 3.5. The situation at hand is reminiscent of “Method
2” in [12]. There, the dominant error term is also multiplied by an oscillatory factor.
And this leads to a reduced error order at resonant values of the spatial grid.

To illustrate the possible behavior of τ , we shall now analyze three examples. First
we take cj = C and the linear phase function φ(xj) := xj = (j− 1)h for j = 1, · · · , N .
Hence

τ = C

n∑

j=1

(
e

2i
ε
h
)j−1

= C
1− e

2i
ε
hn

1− e
2i
ε
h
.

Thus, τ is uniformly bounded (in n, h, ε), if h/ε stays away from kπ, k ∈ N0. Using
τ = Oε,h(1) in (3.18), (3.19) then yields an over all error of the orderOε,h(ε

2 min(ε, h))
+ Oε,h(εhmin(ε, h)) = Oε,h(ε

2h), which is exactly what we see in Figure 3.3 (for
h < 0.1 and for a different φ, though). However, for resonant grid steps (i.e. h

πε ∈ N0)
we have τ = Cn = Oε,h(1/h) (cf. Figure 3.4).

As a second example we consider cj = C and the quadratic phase function
φ(xj) := x2j = (j − 1)2h2; j = 1, · · · , N , which is related to our test example in
§3.2. This yields

τ = C

n∑

j=1

e
2i
ε
h2(j−1)2 = C

n∑

j=1

eiπσ(j−1)2 , 1 ≤ n < N ,
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|τ(n)| as a function of h = 1/N, N ∈ N for a
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120π
implies that h/ε hits exactly the resonance
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where σ = 2
πεh

2. Hardy and Littlewood [6] studied this type of series: for irrational
σ fixed, we have

n∑

j=1

eiπσ(j−1)2 = o(n) as n→ ∞ .

But for rational σ we only have τ = O(n) as n→ ∞. In Th. III of [23] this result was

refined, showing that τ = O(
√
n(log n)

1
4
+ǫ) for almost all σ ∈ R. And this illustrates

the delicate resonance behavior of oscillatory sums like (3.20).
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Fig. 3.5. Solid line: Oscillatory sum ‖τ‖∞ as a function of h = 1/N, N ∈ N for our numerical
example and ε = 10−3, 10−4. The lower dashed line is the function 8ε2h for the asymptotic behavior
of ‖τ‖∞ for h small. The circles indicate the positions of the discretization steps chosen in Fig.
3.3. The upper dashed line reflects very closely the error estimate of order Oε,h(εmin(ε, h)) given
in Theorem 3.5.

Finally, we compute τ for the modified first order scheme applied to the numerical
example of §3.2, i.e. with the coefficients cj given by (3.19). Figure 3.5 shows ‖τ‖∞
as a function of h = 1/N, N ∈ N. As a comparison we also include the function Cε2h
with the fitted constant C = 8, which represents very well the asymptotic behavior
of ‖τ‖∞ for h small. Observe that h = 2−8 (for ε = 10−3, left picture) and h = 2−11

(for ε = 10−4, right picture) are close to resonances of τ . And this is clearly reflected
by the increased simulation error at these precise values of h (cf. Figure 3.3). The
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included upper bound is obtained by computing

n∑

j=1

|cj | in (3.19), and this corresponds

precisely to the error estimate of order Oε,h(εmin(ε, h)) given in Theorem 3.5.

To sum up, the estimates of Theorem 3.5 are (in general) sharp, in the sense
of guaranteeing first order convergence (independently of resonances - a property
also shared by the methods in [11]). But “most of the time” we obtain even better
simulation results, as seen in Figure 3.3. Finally, we remark that also Fig. 3.1 shows
some (quite mild) resonance behavior at certain values of h. But we shall not extend
here the refined error analysis to those schemes.

4. Conclusion. We have introduced in this paper a new method for solving
highly oscillating differential equations. This method differs from standard numerical
methods by using first an analytic reformulation of the problem in order to eliminate
the high oscillations of the solution. The transformed “smooth” (i.e. less oscillatory)
equation was then numerically discretized. Error estimates underlined the advantages
of the new method: For phase integrals that can be computed analytically, the method
is even asymptotically correct w.r.t. the small problem parameter ε. In this case the
error decreases as ε→ 0, even for a fixed spatial grid size h.
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[12] T. Jahnke, C. Lubich, Numerical integrators for quantum dynamics close to the adiabatic limit,
Numerische Mathematik, 94 (2003), pp. 289–314.

[13] S. Jin, L. Pareschi, G. Toscani, Diffusive relaxation schemes for multiscale discrete-velocity
kinetic equations, SIAM J. Numer. Anal., 35 (1998), no. 6, pp. 2405–2439.

[14] A. Klar, L. Pareschi, M. Seaid, Uniformly accurate schemes for relaxation approximations to
fluid dynamic equations, Appl. Math. Lett., 16 (2003), no. 7, pp. 1123–1127.

[15] L.D. Landau, E.M. Lifschitz, Quantenmechanik, Akademie-Verlag, Berlin, 1985.
[16] C. S. Lent, D. J. Kirkner, The Quantum Transmitting Boundary Method, J. Appl. Phys., 67

(1990), pp. 6353–6359.
[17] K. Lorenz, T. Jahnke, C. Lubich, Adiabatic integrators for highly oscillatory second-order linear

differential equations with time-varying eigendecomposition, BIT, 45 (2005), no. 1, pp. 91–
115.

[18] J.M. Melenk, On the convergence of Filon quadrature, J. Comput. Appl. Math., 234 (2010), no.
6, pp. 1692–1701.

[19] C. Negulescu, Numerical analysis of a multiscale finite element scheme for the resolution of the
stationary Schroedinger equation, Numerische Mathematik, 108 (2008), no. 4, pp. 625–652.

[20] C. Negulescu, N. Ben Abdallah, M. Mouis, An accelerated algorithm for 2D simulations of the
quantum ballistic transport in nanoscale MOSFETs, Journal of Computational Physics, 225
(2007), no. 1, pp. 74–99.

[21] S. Olver, Moment-free numerical integration of highly oscillatory functions, IMA J. Numer.
Analy., 26 (2006), pp. 213–227.

[22] S. Olver, Moment-free numerical approximation of highly oscillatory integrals with stationary
points, European J. Appl. Math., 18 (2007), no. 4, pp. 435–447.

[23] Z. Zalcwasser, Sur les polynomes associés aux fonctions modulaires ϑ, Studia Math., 7 (1938),
pp. 16–35.


