profile picture

Alexander Rieder

Institute for Analysis and Scientific Computing (Inst. E 101)
Vienna University of Technology
Wiedner Hauptstraße 8-10
1040 Wien, Austria


Tel: +43 1 58801-10168
Office: DA 04 L 14 (green section, 4. floor)

Research interests:

Short Curriculum Vitae:

03/1989: born in Bruneck/Brunico, Italy
10/2008-10/2011: Bachelor of Science in Mathematics, Technische Universität Wien
10/2011-10/2013: Master of Science in Mathematics, Technische Universität Wien
09/2015-12/2015: visiting L.Banjai, Heriot-Watt University Edinburgh, UK
07/2016-09/2016: visiting F-J. Sayas, University of Delaware , USA
10/2013-06/2017 Phd student and Projektassistent, Technische Universität Wien, supervised by J.M. Melenk,
funded by the Austrian Science Fund(FWF) as part of the Doctoral school "Dissipation and Dispersion in Nonlinear PDEs"
since 10/2017 Postdoc at Technische Universität Wien,
part of the FWF special research program Taming Complexity in Partial Differential Systems


[1] Tianyu Qiu, Alexander Rieder, Francisco-Javier Sayas, and Shougui Zhang. Time-domain boundary integral equation modeling of heat transmission problems, 2017.
arXiv ]


[1] Lehel Banjai and Alexander Rieder. Convolution quadrature for the wave equation with a nonlinear impedance boundary condition. Mathematics of Computation, page 1, 2017.
DOI | arXiv | http ]
[2] Jens Markus Melenk and Alexander Rieder. Runge-Kutta convolution quadrature and FEM-BEM coupling for the time-dependent linear Schrödinger equation. J. Integral Equations Appl., 29(1):189--250, 2017.
DOI | arXiv | http ]
[3] T. Führer, J. M. Melenk, D. Praetorius, and A. Rieder. Optimal additive Schwarz methods for the hp-BEM: the hypersingular integral operator in 3D on locally refined meshes. Comput. Math. Appl., 70(7):1583--1605, 2015.
DOI | arXiv | http ]


Convolution Quadrature and Boundary Element Methods in wave propagation: a time domain point of view pdf