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A POSTERIORI ERROR ESTIMATION FOR MAGNUS-TYPE INTEGRATORS ∗

Winfried Auzinger1, Harald Hofstätter2, Othmar Koch2, Michael Quell1

and Mechthild Thalhammer3

Abstract. We study high-order Magnus-type exponential integrators for large systems of ordinary

di�erential equations de�ned by a time-dependent skew-Hermitian matrix. We construct and analyze

defect-based local error estimators as the basis for adaptive stepsize selection. The resulting procedures

provide a posteriori information on the local error and hence enable the accurate, e�cient, and reliable

time integration of the model equations. The theoretical results are illustrated on a model of solar cells

composed of heterostructures based on transition metal oxides.

1991 Mathematics Subject Classi�cation. 65L05, 65L20 65L50 65L70 .

.

1. Introduction and overview

Problem. We study systems of linear ordinary di�erential equations{
ψ′(t) = A(t)ψ(t) = − iH(t)ψ(t) , t > t0 ,

ψ(t0) = ψ0 given ,
(1.1)

de�ned by a time-dependent Hermitian matrix H : R→ Cd×d. Although the considerations below also apply to
the situation of general A(t), the assumption of a Schrödinger type model avoids the di�culty of having to take
into account possible order reduction [26] and guarantees a unitary evolution. It is moreover strongly motivated
by the applications in solid state physics in our interest, which involve Hubbard models of electrons in a solid.
The evolution operator (i.e., the fundamental solution) E = E(τ ; t0) of the system (1.1) is characterized by the
relation

d
dτ E(τ ; t0) = A(t0 + τ) E(τ ; t0), E(0, t0) = Id, (1.2)

with `relative' time τ and `absolute' time t = t0 + τ , such that the solution of the initial value problem (1.1) is
given by

ψ(t) = ψ(t0 + τ) = E(τ ; t0)ψ0 .

Keywords and phrases: Non-autonomous linear di�erential equations; Magnus-type integrators; A posteriori local error estima-
tion; Asymptotical correctness; Adaptive stepsize selection
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For A(t) of the form (1.1), the evolution operator E(τ ; t0) is unitary. It can be (formally) represented by the
Magnus series (2.7) [25].

Magnus-type integrators. The numerical solution of large linear systems of the type (1.1) has been ex-
tensively studied in the literature. Attention has recently focussed on commutator-free Magnus-type methods
(CFM) [13]. These are constructed as compositions of exponentials of linear combinations of A(t) evaluated
at di�erent times t. Earlier mathematical work has centered around the construction of CFM methods which
are convenient to evaluate without storing excessive intermediate results, where the optimal balance between
computational e�ort and accuracy is sought. Already in [13], the coe�cients for high-order CFM methods were
derived based on nonlinear optimization of the free parameters in the order conditions to minimize local error
constants. With this objective, methods of orders 4�8 were constructed in [1], and applied to strongly correlated
electron systems in [2]. In [11] the algebraic framework underlying a systematic construction is discussed. Yet
another interesting approach was applied to the Schrödinger equation in [7, 8], where all the calculations are
performed in the underlying Lie algebra, and practical evaluation of the arising integrals is deferred to the last
stage, see also [19]. This leads to the derivation of so-called commutator-free Magnus-type integrators in [8].
Alternative approaches to the construction of favorable integrators based on the evaluation of exponentials rely
on the Magnus expansion. The seminal references to the classical Magnus approach are [20,24], where the former
in particular reveals the underlying algebraic structure. In [12], unconventional schemes involving evaluation
of some commutators are introduced which are favorable for matrices of a certain structure. Generally, it
is di�cult to assess the tradeo� between the incorporation of commutators, which are usually expensive to
compute and store, and the use of additional exponentials in commutator-free methods, see for example [12]. A
similar problem-dependent tradeo� between evaluation of commutators and computation of exponentials also
has to be taken into account in the construction of error estimators, see Section 3 below.
An a priori theoretical error analysis for Magnus integrators of second and fourth order has �rst been given
in [18] for discretizations of Schrödinger equations. The critical quantities appearing in the error bounds involve
commutators such as [A(t), A(t′)] of the system matrix evaluated at di�erent time points, which are estimated
under appropriate regularity assumptions on the exact solution. The proof is based on estimates of the truncation
error of the (in�nite) Magnus series and estimates of the quadrature error in an integral representation of the
remainder. The mathematical error analysis implies a mild stepsize restriction for methods of higher order. The
analysis has been extended to parabolic problems in [26], where order reductions are observed, however.

Error estimation. Reliable error estimation to serve as the basis for adaptive step-size selection for the time
propagation is of particular value in large-scale applications. Previous work, however, is mainly concerned with
the derivation of a priori error bounds, but does not treat the construction of a posteriori error estimators
which were successfully applied for instance for exponential operator splitting methods [5,6]. A posteriori error
estimation and adaptive step selection for Magnus-type integrators is to our knowledge only discussed in [22],
where classical Magnus integrators are endowed with a global error estimator based on integration of an adjoint
problem as suggested in [14].
Alternatively to the Magnus-type approaches, splitting methods could be used to eliminate the time-dependence
by freezing the independent variable and propagating it separately, see [10]. This allows to employ e�cient high-
order adaptive splitting methods proposed and analyzed for instance in [4,6]. For these, a large body of theory
has been developed in recent years, see for instance [9,15,23] and references therein. In [21], it was concluded that
for the considered problem class, Magnus-type integrators used in conjunction with a Lanczos approach excel
over splitting or partitioned Runge-Kutta methods. The practical merits of our adaptive approach relying on
defect-based error estimators, also as compared to adaptive splitting methods, will be assessed in the forthcoming
study [3].
The main objective of the present work is to construct and analyze defect-based a posteriori error estimators for
Magnus-type integrators; for the purpose of comparison, widely used classical Magnus integrators are considered
as well. Although only symmetric schemes appear in this paper, our considerations are fully general.
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Notation for commutators. We employ the common denotation adΩ(A) := [Ω, A] = ΩA − AΩ for the
commutator of two matrices Ω, A ∈ Cn×n, and the symbol adk refers to repeated application of the commutation
operator,

ad0
Ω(A) = A ,

admΩ (A) =
[
Ω, adm−1

Ω (A)
]

= Ω adm−1
Ω (A)− adm−1

Ω (A) Ω , m ∈ N .
(1.3)

2. Magnus-type integrators

We consider Magnus-type one-step methods for the approximation of (1.1) on a time grid (t0, t1, . . . , tn, . . . ),

ψn+1 = S(τn; tn)ψn ≈ ψ(tn+1) = E(τn; tn)ψ(tn), τn = tn+1 − tn , n = 0, 1, 2, . . . .

In the sequel, for describing the particular schemes under consideration, we use a simpli�ed notation and consider
a single step starting from t = t0 with stepsize τ ,

ψ1 = S(τ ; t0)ψ0 ≈ ψ(t0 + τ) . (2.1)

Furthermore, in order to avoid unnecessary overloading of notation, we suppress the dependence on t0 of
`internal' objects involved in the de�nition of the integrators. Only the dependence on the stepsize τ is indicated;
see for instance (2.2) below.

Commutator-free Magnus-type (CFM) integrators.
We �rst focus on higher-order commutator-free Magnus-type integrators [13]. These approximate the exact �ow
in terms of products of exponentials of linear combinations of the system matrix evaluated at di�erent times,
avoiding evaluation and storage of commutators.
A high-order CFM scheme is thus de�ned by (2.1), with

S(τ ; t0) = SJ(τ) · · · S1(τ) = eΩJ (τ) · · · eΩ1(τ) , Ωj(τ) = τBj(τ), j = 1, . . . , J,

Bj(τ) =

K∑
k=1

ajk Ak(τ), Ak(τ) = A(t0 + ckτ) ,
(2.2)

where the coe�cients ajk, ck are chosen such that the method realizes a certain convergence order p. For
convenience, we collect the coe�cients in

c = (c1, . . . , cK) ∈ [0, 1]K , a =

a11 . . . a1K

...
. . .

...
aJ1 . . . aJK

 ∈ RJ×K . (2.3)

Examples of symmetric CFM integrators.

(i) The second-order exponential midpoint scheme (p = 2), given by

J = 1, K = 1, c = 1
2 , a = 1 ,

is a simple instance of a Magnus-type integrator. Thus,

S(τ ; t0) = eτA(t0+ τ
2 ) . (2.4)
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(ii) A fourth-order commutator-free integrator (p = 4) based on two Gaussian nodes and comprising two
matrix exponentials is de�ned by

J = 2 , K = 2 , c =
(

1
2 −

√
3

6 , 1
2 +

√
3

6

)
, a =

(
1
4 +

√
3

6
1
4 −

√
3

6

1
4 −

√
3

6
1
4 +

√
3

6

)
. (2.5a)

(iii) An optimized fourth-order scheme (p = 4) from [1] is

J = 3 , K = 3 , c =


1
2 −

√
15

10

1
2

1
2 +

√
15

10

 , a =


37
240 + 10

87

√
15
3 − 1

30
37
240 −

10
87

√
15
3

− 11
360

23
45 − 11

360

37
240 −

10
87

√
15
3 − 1

30
37
240 + 10

87

√
15
3

 . (2.5b)

(iv) A sixth-order commutator-free integrator (p = 6) based on three Gaussian nodes and comprising six matrix
exponentials is given by

J = 6 , K = 3 , c =
(

1
2 −

√
15

10 , 1
2 ,

1
2 +

√
15

10

)
,

a =


0.2158389969757678 − 0.0767179645915514 0.0208789676157837
− 0.0808977963208530 − 0.1787472175371576 0.0322633664310473

0.1806284600558301 0.4776874043509313 − 0.0909342169797981
− 0.0909342169797981 0.4776874043509313 0.1806284600558301

0.0322633664310473 − 0.1787472175371576 − 0.0808977963208530
0.0208789676157837 − 0.0767179645915514 0.2158389969757678

 ,
(2.6)

see [1].

Classical Magnus integrators. A di�erent, indeed the more classical, approach to the approximation of (1.1)
is directly based on the Magnus expansion [24]: The solution to a time-dependent system (1.1) can be represented
by

ψ(t0 + τ) = E(τ ; t0)ψ0 = eΩ(τ)ψ0 , (2.7a)

where Ω(τ) satis�es

Ω′(τ) =
∑
k≥0

bk
k!

adkΩ(τ)(A(t0 + τ)) , Ω(0) = 0 , (2.7b)

with the Bernoulli numbers bk.
Numerical integrators can be obtained by truncating the Magnus expansion (2.7b) and a suitable approximation
Ω(τ) to the arising multi-dimensional integral representation for Ω(τ) by numerical quadrature, and de�ning
ψ1 by (2.1) with

S(τ ; t0) = eΩ(τ) ≈ eΩ(τ). (2.8)

A detailed exposition on this approach is given for example in [11] and in [15].
This type of integrator is, in general, considered as computationally expensive due to the requirement to
compute and store commutators of large matrices. For problems of a particular structure, however, as in
the semiclassical regime, or when commutators turn out to be of higher order O(τk) than O(1) as expected
generically, this approach may excel over the commutator-free methods, see [1, 8, 12].

Examples of classical symmetric Magnus integrators. Again we denote

Ak(τ) = A(t0 + ckτ) , (2.9)

with a set of nodes de�ned by c = (c1, . . . , cK) ∈ [0, 1]K .
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(i) The exponential midpoint scheme (2.4) (order p = 2) is also a classical Magnus integrator, with K = 1
and

c = 1
2 , Ω(τ) = τA1(τ) . (2.10)

(ii) A commonly used fourth-order Magnus integrator (p = 4) is based on two Gaussian nodes, with K = 2
and

c =
(

1
2 −

√
3

6 , 1
2 +

√
3

6

)
, Ω(τ) = 1

2τ
(
A1(τ) +A2(τ)

)
−
√

3
12 τ

2
[
A1(τ), A2(τ)

]
. (2.11)

(iii) A sixth-order Magnus integrator (p = 6) based on three Gaussian nodes (K = 3) is given by

c =
(

1
2 −

√
15

10 , 1
2 ,

1
2 +

√
15

10

)
,

B1(τ) = τA2(τ) , B2(τ) =
√

15
3 τ

(
A3(τ)−A1(τ)

)
, B3(τ) = 10

3 τ
(
A1(τ)− 2A2(τ) +A3(τ)

)
,

C1(τ) =
[
B1(τ), B2(τ)

]
, C2(τ) = − 1

60

[
B1(τ), 2B3(τ) + C1(τ)

]
,

Ω(τ) = B1(τ) + 1
12 B3(τ) + 1

240

[
− 20B1(τ)−B3(τ) + C1(τ), B2(τ) + C2(τ)

]
,

(2.12)

see [11, Eq. (251)].

3. Defect-based a posteriori local error estimators

The local error of (2.1) is

ψ1 − ψ(t0 + τ) = L(τ ; t0)ψ0 , (3.1a)

with the local error operator

L(τ ; t0) = S(τ ; t0)− E(τ ; t0) . (3.1b)

We aim for designing asymptotically correct computable estimators

L̃(τ ; t0)ψ0 ≈ L(τ ; t0)ψ0

for the local error of CFM and classical Magnus integrators, based on the notion of the defect of the numerical
approximation. The idea is related to [5, 6].

Remark 3.1. In the remainder of this section, L(τ ; t0) is simply called the local error. The associated defect

operator D(τ ; t0) de�ned in (3.3) below is simply called the defect. The error estimator L̃(τ ; t0)ψ0 will be based
on (approximate) evaluation of the defect at ψ0.

3.1. Basic idea of the construction

We proceed from the fact that a one-step approximation (2.1) of order p is characterized by the property
L(τ ; t0) = O(τp+1), or equivalently, L(0; t0) = 0 and

dq

dτqL(τ ; t0)
∣∣
τ=0

= 0 , q = 1, . . . , p . (3.2)

With the defect

D(τ ; t0) = d
dτ S(τ ; t0)−A(t0 + τ)S(τ ; t0) , (3.3)

the local error, as a function of τ , is the solution of

d
dτL(τ ; t0) = A(t0 + τ)L(τ ; t0) +D(τ ; t0) , L(0; t0) = 0 , (3.4a)

and hence,

L(τ ; t0) =

∫ τ

0

Π(τ, σ)D(σ; t0) dσ =:

∫ τ

0

D̂(σ; t0) dσ , (3.4b)
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with
Π(τ, σ) = E(τ ; t0) E(−σ; t0 + σ) = E(τ − σ; t0 + σ) , Π(τ, τ) = Id .

Repeated di�erentiation of (3.4a) gives

dq

dτqL(τ ; t0) =

q−1∑
k=0

(
q−1
k

)
dq−1−k

dτq−1−kA(t0 + τ) dk

dτk
L(k)(τ) + dq−1

dτq−1D(τ ; t0) ,

thus the relations (3.2) are equivalent to

dq

dτqD(τ ; t0)
∣∣
τ=0

= 0 , q = 0, . . . , p− 1 . (3.5)

Therefore the integrand

D̂(σ; t0) = Π(τ, σ)D(σ; t0) (3.6a)

in (3.4b) also satis�es
dq

dσq D̂(σ; t0)
∣∣
σ=0

= 0 , q = 0, . . . , p− 1 . (3.6b)

For the integral in (3.4b) we now consider an approximation of order O(τp+2) based on Taylor expansion,

L(τ ; t0) =

∫ τ

0

D̂(σ; t0) dσ ≈
∫ τ

0

σp

p! D̂
(p)(0; t0) dσ = τp+1

(p+1)! D̂
(p)(0; t0)

≈ τ
p+1 D̂(τ ; t0) = τ

p+1 Π(τ, τ)D(τ ; t0) = τ
p+1D(τ ; t0) .

(3.7a)

Here, `≈' means asymptotic approximation at the level O(τp+2), where the approximation error depends on
dp+1

dσp+1 D̂(σ; t0) . The local error estimate

τ
p+1D(τ ; t0) = L(τ ; t0) +O(τp+2)

de�ned by (3.7a) involves a single evaluation of the defect D(τ ; t0) for the given stepsize τ . The derivat-
ive d

dτ S(τ ; t0) involved in the de�nition (3.3) of D(τ ; t0) is not directly computable but, as shown below, it can
be expressed in a derivative-free way, and this enables a computable, asymptotically correct approximation

D̃(τ ; t0) = D(τ ; t0) +O(τp+1) . (3.7b)

The resulting practical error estimator is denoted by

L̃(τ ; t0) = τ
p+1 D̃(τ ; t0) = L(τ ; t0) +O(τp+2) . (3.7c)

The error of this approximation will be analyzed in more detail in Sec. 4.
In view of the form of the schemes of types (2.2) or (2.8) considered here, D(τ ; t0) contains terms of the type
d
dτ eΩ(τ), in particular with Ω(τ) of the form Ω(τ) = τB(τ). Therefore we �rst collect representations for
derivatives of matrix exponentials, for the purpose of constructing derivative-free approximations (3.7b).

3.2. Derivatives of matrix exponentials

Fréchet derivative of the matrix exponential. An induction argument shows that the Fréchet derivative
of matrix powers Ωk with respect to Ω ∈ Cd×d, evaluated at V ∈ Cd×d, is given by

(
d

dΩΩm
)
(V ) =

m∑
k=0

Ωm−1−k V Ωk =

m−1∑
k=0

(
m
k+1

)
adkΩ(V ) Ωm−1−k , m ∈ N ,
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see [15, Sec. III.4, (4.3)]. This implies that the Fréchet derivative of

eΩ =
∑
m≥0

1
m! Ωm

takes the form (
d

dΩeΩ
)
(V ) =

∑
m≥0

1
(m+1)! admΩ (V ) eΩ , (3.8a)

see [15, Sec. III.4, Lemma 1].
An alternative representation even more useful for our purpose is given by the integral formula (see [17, Sec. 10.2,
(10.15)]) (

d
dΩeΩ

)
(V ) =

∫ 1

0

esΩ V e(1−s)Ω ds . (3.8b)

Time derivative. For a given time-dependent matrix Ω = Ω(τ), the matrix-valued function eΩ(τ) satis�es a
linear di�erential equation. In particular, (3.8a) implies1

d
dτ eΩ(τ) =

(
d

dΩeΩ
)∣∣

Ω(τ)
(Ω′(τ)) = Γ(τ) eΩ(τ) , with Γ(τ) =

∑
m≥0

1
(m+1)! admΩ(τ)(Ω

′(τ)) .

For a time-dependent matrix of the form appearing in the integrators considered,

Ω(τ) = τB(τ) , (3.9)

we have Ω′(τ) = B(τ) + τB′(τ) and

admΩ(τ)(Ω
′(τ)) = τm+1 admB(τ)(B

′(τ)), m ∈ N ,

which implies

d
dτ eτB(τ) = Γ(τ) eτB(τ) ,

with Γ(τ) = B(τ) +
∑
m≥0

1
(m+1)!τ

m+1admB(τ)(B
′(τ))

= B(τ) + τB′(τ) + 1
2τ

2[B(τ), B′(τ)] + 1
6τ

3[B(τ), [B(τ), B′(τ)]] + . . . .

(3.10a)

A computable approximation for the time derivative d
dτ eτB(τ) with error O(τp+1) is obtained by truncating the

sum in (3.10a), i.e.,

Γ̃(τ) eτB(τ) = d
dτ eτB(τ) +O(τp+1), with Γ̃(τ) =

p∑
m=0

1
m!τ

m admB(τ)(B
′(τ)) . (3.10b)

Alternatively, for Ω(τ) of the form (3.9), the representation (3.8b) together with the substitution τs = σ gives

d
dτ eτB(τ) = Γ(τ) eτB(τ) ,

with Γ(τ) = B(τ) +

∫ τ

0

F (σ; τ) dσ, F (σ; τ) = eσB(τ)B′(τ) e−σB(τ) ,
(3.11a)

1For Ω(τ) = Ω(τ) from (2.7) we have Γ(τ) = A(t0 + τ).
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and replacing the integral in (3.11a) by a quadrature formula of order p also leads to a computable approximation
for the time derivative d

dτ eτB(τ) in the form

Γ̃(τ) eτB(τ) = d
dτ eτB(τ) +O(τp+1), where Γ̃(τ) = quadrature approximation of Γ(τ) with error O(τp+1).

(3.11b)
Here one may apply conventional interpolatory quadrature or, as a better choice, Hermite-type quadrature
involving evaluations of a number of derivatives of the integrand F (σ; τ) at σ = 0 or σ = τ , which depend
on commutators admB(τ)(B

′(τ)). The special case where only evaluations of the integrand at σ = 0 are used,

corresponds to the truncated expansion Γ̃(τ) from (3.10b). We may call this `Taylor quadrature', since it is
based on Taylor expansion of the integrand w.r.t. σ for given τ ; we denote it by Tp(F, 0, τ).

On the basis of such an approximation Γ̃(τ) ≈ Γ(τ) ≈ A(t0 + τ), computable asymptotically correct approx-

imations D̃(τ ; t0) of the defect D(τ ; t0) de�ned in (3.3) can be constructed. In the sequel we describe some
variants.

3.3. Local error estimators for CFM integrators.

For CFM integrators (2.2), the defect is given by (3.3),

D(τ ; t0) = d
dτ S(τ ; t0)−A(t0 + τ)S(τ ; t0)

=
(

d
dτ SJ(τ)

)
SJ−1(τ) · · · S1(τ) + . . . + SJ(τ) · · · S2(τ)

(
d
dτ S1(τ)

)
−A(t0 + τ)S(τ ; t0)

= ΓJ(τ)SJ(τ)SJ−1(τ) · · · S1(τ) + . . . + SJ(τ) · · · S2(τ) Γ1(τ)S1(τ)−A(t0 + τ)S(τ ; t0) ,

with Sj(τ) = eΩj(τ) = eτBj(τ), and Γ̃j related to Bj as in (3.10a). An asymptotically correct, computable
approximation

D̃(τ ; t0) = Γ̃J(τ)SJ(τ)SJ−1(τ) · · · S1(τ) + . . . + SJ(τ) · · · S2(τ) Γ̃1(τ)S1(τ)−A(t0 + τ)S(τ ; t0)

= D(τ ; t0) +O(τp+1)

is obtained by approximating, for j = 1, . . . , J , the Γj(τ) according to (3.10) or (3.11). This leads to di�erent

approximations Γ̃j(τ) for the Γj(τ) and corresponding defect approximations D̃(τ ; t0) and local error estimators

L̃(τ ; t0), see (3.7c).

(i) Second-order exponential midpoint scheme (2.4): Here, J = 1 and S(τ ; t0) = S1(τ) = eτB(τ) with B(τ) =
B1(τ) = A(t0 + τ

2 ). Thus,

D̃(τ ; t0) = Γ̃(τ)S(τ ; t0)−A(t0 + τ)S(τ ; t0) . (3.12)

Using Taylor quadrature (3.10b) with p = 2, i.e.,

Γ̃(τ) = B(τ) + τB′(τ) + 1
2τ

2[B(τ), B′(τ)] ,

(3.12) takes the form

D̃(τ ; t0) =
(
B(τ) + τB′(τ) + 1

2τ
2[B(τ), B′(τ)]−A(t0 + τ)

)
S(τ ; t0)

=
(
A(t0 + τ

2 ) + 1
2τA

′(t0 + τ
2 ) + 1

4τ
2[A(t0 + τ

2 ), A′(t0 + τ
2 )]−A(t0 + τ)

)
S(τ ; t0) . (3.13a)

Provided that evaluation of A′′ is available, another asymptotically correct simpli�cation is

D̃(τ ; t0) =
(
− 1

8τ
2A′′(t0 + τ) + 1

4τ
2 [A(t0 + τ), A′(t0 + τ)]

)
S(τ ; t0) . (3.13b)
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Application of D̃(τ ; t0) to ψ0 does not require evaluation of an additional matrix exponential. For instance,
in practice application of (3.13b) means: Compute

D̃(τ ; t0)ψ0 =
(
− 1

8τ
2A′′(t0 + τ) + 1

4τ
2 [A(t0 + τ), A′(t0 + τ)]

)
ψ1 ,

since S(τ ; t0)ψ0 = ψ1.
As an alternative, we approximate the integral representation of the type (3.11a) for Γ(τ) using the

second-order trapezoidal quadrature,∫ τ

0

F (σ; τ) dσ ≈ Q2(F, 0, τ) = 1
2τ
(
F (0; τ) + F (τ ; τ)

)
, (3.14)

with F (σ; τ) = eσB(τ)B′(τ) e−σB(τ) as in (3.11a). This gives the approximation

Γ̃(τ) = B(τ) + 1
2τ
(
B′(τ) + eτB(τ)B′(τ) e−τB(τ)

)
.

Then, (3.12) takes the form

D̃(τ ; t0) =
(
B(τ) + 1

2τ(B′(τ) + eτB(τ)B′(τ) e−τB(τ))−A(t0 + τ)
)
S(τ ; t0)

=
(
B(τ) + 1

2τB
′(τ)−A(t0 + τ)

)
S(τ ; t0) + 1

2τ S(τ ; t0)B′(τ)

=
(
A(t0 + τ

2 ) + 1
4τA

′(t0 + τ
2 )−A(t0 + τ)

)
S(τ ; t0) + 1

4τ S(τ ; t0)A′(t0 + τ
2 ) . (3.15)

This involves evaluation of one additional matrix exponential, namely S(τ ; t0)A′(t0 + τ
2 )ψ0.

(ii) Fourth-order scheme of the type (2.5a): Here, J = 2 and S(τ ; t0) = S2(τ)S1(τ) = eτB2(τ) eτB1(τ). Thus,

D̃(τ ; t0) = Γ̃2(τ)S2(τ)S1(τ) + S2(τ) Γ̃1(τ)S1(τ)−A(t0 + τ)S(τ ; t0) . (3.16)

Using Taylor quadrature (3.10b) with p = 4, i.e.,

Γ̃j(τ) = Bj(τ) + τB′j(τ) + 1
2τ

2[Bj(τ), B′j(τ)] + 1
6τ

3[Bj(τ), [Bj(τ), B′j(τ)]]

+ 1
24τ

4[Bj(τ), [Bj(τ), [Bj(τ), B′j(τ)]]] , j = 1, 2 ,
(3.17)

results in evaluation of D̃(τ ; t0) according to (3.16) requiring the evaluation of one additional matrix

exponential, namely S2(τ)Γ̃1(τ)S1(τ)ψ0, provided the intermediate value S1(τ)ψ0 is stored.
As an alternative, we consider the fourth-order modi�ed trapezoidal quadrature of Hermite type,∫ τ

0

F (σ; τ) dσ ≈ Q4(F, 0, τ) = 1
2τ
(
F (0; τ) + F (τ ; τ)

)
+ 1

12τ
2
(
∂
∂σF (σ; τ)

∣∣
σ=0
− ∂

∂σF (σ; τ)
∣∣
σ=τ

)
. (3.18)

For F (σ; τ) = eσBj(τ)B′j(τ) e−σBj(τ) as in (3.11a) we have

∂
∂σF (σ; τ)

∣∣
σ=0

= [Bj(τ), B′j(τ)] , ∂
∂σF (σ; τ)

∣∣
σ=τ

= eτBj(τ) [Bj(τ), B′j(τ)] e−τBj(τ) .

For the integral representation of the type (3.11a) for the Γj(τ) this gives, for j = 1, 2,

Γ̃j(τ) = Bj(τ) + 1
2τ
(
B′j(τ) + eτBj(τ)B′j(τ) e−τBj(τ)

)
+ 1

12τ
2
(
[Bj(τ), B′j(τ)]− eτBj(τ) [Bj(τ), B′j(τ)] e−τBj(τ)

)
.

(3.19a)
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Thus, with Sj(τ) = eτBj(τ),

Γ̃j(τ)Sj(τ) =
(
Bj(τ) + C+

j (τ)
)
Sj(τ) + Sj(τ)C−j (τ) , C±j (τ) = 1

2τB
′
j(τ)± 1

12τ
2[Bj(τ), B′j(τ)] . (3.19b)

Then, (3.16) takes the form

D̃(τ ; t0) =
(
B2(τ) + C+

2 (τ)−A(t0 + τ)
)
S(τ ; t0)

+ S2(τ)
(
B1(τ) + C+

1 (τ) + C−2 (τ)
)
S1(τ) + S(τ ; t0)C−1 (τ) .

(3.20)

This requires the evaluation of three additional exponentials (again provided the intermediate value
S1(τ)ψ0 is stored), but only �rst-order commutator expressions are involved in the evaluation of C±j (τ).
Again, the basic scheme and the defect are evaluated in parallel.

(iii) For higher-order schemes as for instance (2.6), the evaluation of the defect of course becomes more ex-
pensive. For schemes of order 6, for instance, applying the sixth order Hermite quadrature

∫ τ

0

F (σ; τ) dσ ≈ Q6(F, 0, τ) = 1
2τ(F (0; τ) + F (τ ; τ)) + 1

10τ
2
(
∂
∂σF (σ; τ)

∣∣
σ=0
− ∂

∂σF (σ; τ)
∣∣
σ=τ

)
+ 1

120τ
3
(
∂2

∂σ2F (σ; τ)
∣∣
σ=0

+ ∂2

∂σ2F (σ; τ)
∣∣
σ=τ

)
,

(3.21)

with F (σ; τ) = eσBj(τ)B′j(τ) e−σBj(τ) as before, and

∂2

∂σ2F (σ; τ)
∣∣
σ=0

= ad2
Bj(τ)(B

′
j(τ)) , ∂2

∂σ2F (σ; τ)
∣∣
σ=τ

= eτBj(τ) ad2
Bj(τ)(B

′
j(τ)) e−τBj(τ) ,

is a reasonable option, and evaluation of D(τ ; t0) is straightforward as for lower-order schemes. We give
no further details here.

3.4. Local error estimators for classical Magnus integrators.

Classical Magnus integrators are of the form (2.8), where again Ω(τ) is of the form τB(τ). Thus,

D(τ ; t0) = d
dτ S(τ ; t0)−A(t0 + τ)S(τ ; t0)

= d
dτ eτB(τ) −A(t0 + τ) eτB(τ) = Γ(τ) eτB(τ) −A(t0 + τ) eτB(τ) , (3.22)

which can be approximated on the basis of (3.10b) or (3.11b).
As an example we consider the fourth-order scheme de�ned by (2.11), where

B(τ) = 1
2

(
A(t0 + c1τ) +A(t0 + c2τ)

)
−
√

3
12 τ [A(t0 + c1τ), A(t0 + c2τ)] ,

with

B′(τ) = 1
2

(
c1A

′(t0 + c1τ) + c2A
′(t0 + c2τ)

)
−
√

3
12 [A(t0 + c1τ), A(t0 + c2τ)]

−
√

3
12 τ

(
c1 [A′(t0 + c1τ), A(t0 + c2τ)] + c2 [A(t0 + c1τ), A′(t0 + c2τ)]

)
.

Using Taylor quadrature (3.10b) with p = 4 as in (3.17), i.e.,

Γ̃(τ) = B(τ) + τB′(τ) + 1
2τ

2[B(τ), B′(τ)] + 1
6τ

3[B(τ), [B(τ), B′(τ)]]

+ 1
24τ

4[B(τ), [B(τ), [B(τ), B′(τ)]]] ,
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results in evaluation of D̃(τ ; t0) in the form

D̃(τ ; t0) =
(
Γ̃(τ)−A(t0 + τ)

)
S(τ ; t0) , (3.23)

without evaluation of an additional matrix exponential, but involving evaluation of nested commutators.
Alternatively, approximating the integral representation (3.11a) by the modi�ed trapezoidal rule (3.18) gives
the same expressions as in (3.19),

Γ̃(τ) = B(τ) + 1
2τ
(
B′(τ) + eτB(τ)B′(τ) e−τB(τ)

)
+ 1

12τ
2
(
[B(τ), B′(τ)]− eτB(τ) [B(τ), B′(τ)] e−τB(τ)

)
,

(3.24)

and, with S(τ ; t0) = eτB(τ),

Γ̃(τ)S(τ ; t0) =
(
B(τ) + C+(τ)

)
S(τ ; t0) + S(τ ; t0)C−(τ) , C±(τ) = 1

2τB
′(τ)± 1

12τ
2[B(τ), B′(τ)] . (3.25)

Then, (3.22) takes the form

D̃(τ ; t0) =
(
B(τ)−A(t0 + τ) + C+(τ)

)
S(τ ; t0) + S(τ ; t0)C−(τ) . (3.26)

This requires evaluation of one additional exponential and a number of evaluations of commutators.
In Table 1 we give an overview of the additional computational e�ort required by the di�erent variants of error
estimators for the cases p = 2 and p = 4, in terms of the degree of nested commutators involved and the number
of additional exponentials which need to be evaluated.

CFM-type estimator Classical estimator
p variant adk additional exp variant adk additional exp
2 (3.13) k = 1 0 (3.13) k = 1 0

(3.15) k = 0 1 (3.15) k = 0 1
4 (3.17) k = 3 1 (3.24) k = 3 0

(3.19) k = 1 3 (3.25) k = 1 1
Table 1. Additional computational e�ort for error estimators.

4. Asymptotic analysis

By construction, for a scheme of order p all local error estimators L̃(τ ; t0) = τ
p+1 D̃(τ ; t0) are asymptotically

correct for τ → 0, i.e., they satisfy (3.7c). In the following, we give a more precise characterization of the error
of the error estimate, i.e., of the deviation

L̃(τ ; t0)− L(τ ; t0) = O(τp+2) . (4.1)

4.1. Classi�cation of terms in�uencing the deviation (4.1)

Two di�erent asymptotically correct approximations are involved in the construction of the local error estimate

L̃(τ ; t0) = 1
p+1τD̃(τ ; t0) ≈ L(τ ; t0) (see (3.7)):

(i) approximation of the local error L(τ ; t0) in terms of the exact defect D(τ ; t0), see (3.7a),

(ii) approximation of the associated defect D(τ ; t0) by a computable object D̃(τ ; t0) via quadrature, see (3.7b)
and Sec. 3.3, and 3.4.

The approximation errors can be characterized as follows:
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ad (i): The approximation (3.7a) admits another interpretation, namely as an Hermite-type quadrature for
the local error integral (3.4b), involving only a single evaluation2 of the defect D(τ ; t0) (cf. [5,6]). The
corresponding quadrature error has the Peano representation

τ
p+1 D(τ ; t0)− L(τ ; t0) =

∫ τ

0

Kp+1(σ) dp+1

dσp+1 D̂(σ; t0) dσ , D̂(σ; t0) = Π(τ, σ)D(σ; t0) , (4.2a)

with kernel

Kp+1(σ) =
σ(τ − σ)

p

(p+ 1)!
. (4.2b)

ad (ii): Applying quadrature to integrals as in (3.11a), with integrands of the type

F (σ; τ) = eσB(τ)B′(τ) e−σB(τ) ,

results in D̃(τ ; t0) ≈ D(τ ; t0). The Peano representations of the corresponding quadrature errors read
as follows; here, derivatives of F (σ; τ) are to be understood as partial derivatives w.r.t. σ.

p - th order Taylor quadrature (3.10b).

Tp(F, 0, τ)−
∫ τ

0

F (σ; τ) dσ =

∫ τ

0

− 1
p! (τ − σ)pF (p)(σ; τ) dσ

= − 1
(p+1)! τ

p+1F (p)(0; τ) +O(τp+2) ,

(4.3a)

with

F (p)(σ; τ) = eσB(τ) adpB(τ)(B
′(τ)) e−σB(τ) .

Second-order trapezoidal rule (3.14).

Q2(F, 0, τ)−
∫ τ

0

F (σ; τ) dσ =

∫ τ

0

1
2 σ(τ − σ)F ′′(σ; τ) dσ = 1

12 τ
3 F ′′(0; τ) +O(τ4) , (4.3b)

with

F ′′(σ; τ) = eσB(τ) ad2
B(τ)(B

′(τ)) e−σB(τ).

Fourth-order modi�ed trapezoidal rule (3.18).

Q4(F, 0, τ)−
∫ τ

0

F (σ; τ) dσ =

∫ τ

0

− 1
24 σ

2(τ − σ)
2
F (4)(σ; τ) dσ = − 1

720 τ
5 F (4)(0; t)+O(τ6) , (4.3c)

with

F (4)(σ; τ) = eσB(τ) ad4
B(τ)(B

′(τ)) e−σB(τ) .

An analogous representation holds for higher-order Hermite-type quadrature schemes like (3.21).

2This quadrature formula is based on higher-order Hermite interpolation and corresponding evaluations of dq

dτq
D(τ ; t0)

∣∣
τ=0

, q =

0, . . . , p− 1, which vanish for a scheme of order p, see (3.5).
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4.2. The exponential midpoint scheme (2.4)

In the following, we con�ne ourselves to the case of the exponential midpoint scheme, p = 2, which represents
both a commutator-free and a classical Magnus integrator, and describe the terms in�uencing the deviation (4.1)
in more detail.3 First we take a closer look at the asymptotic behavior of the defect and the local error itself.

The leading term of the local error L(τ ; t0).
For S(τ ; t0) = eτB(τ) = eτA(t0+ τ

2 ), with S(0; t0) = Id, the defect is

D(τ ; t0) = d
dτ S(τ ; t0)−A(t0 + τ)S(τ ; t0)

=
(
Γ(τ)−A(t0 + τ)

)
S(τ ; t0)

=
(
A(t0 + τ

2 ) +

∫ τ

0

eσA(t0+ τ
2 ) 1

2A
′(t0 + τ

2 ) e−σA(t0+ τ
2 ) dσ −A(t0 + τ)

)
S(τ ; t0) ,

(4.4a)

satisfying
D(0; t0) = 0 . (4.4b)

The derivatives of Γ(τ) at τ = 0 can be derived from the asymptotic expansion (3.10a) in the following way:
For the moment, we suppress the argument τ .

Γ = B + τB′ + 1
2τ

2[B,B′] + 1
6τ

3[B, [B,B′]] +O(τ4) ,

Thus, straightforward di�erentiation yields

Γ′ = 2B′

+ τ
(
B′′ + [B,B′]

)
+ 1

2τ
2
(
[B,B′′] + [B, [B,B′]]

)
+O(τ3) .

Furthermore,

Γ′′ = 3B′′ + [B,B′]

+ τ
(
B′′′ + 2 [B,B′′] + [B, [B,B′]]

)
+O(τ2) ,

and

Γ′′′ = 4B′′′ + 3 [B,B′′] + [B, [B,B′]] +O(τ) .

Together with B(m)(τ) = 2−mA(m)(t0 + τ
2 ) this gives

Γ(0) = A(t0) ,

Γ′(0) = A′(t0) ,

Γ′′(0) = 3
4A
′′(t0) + 1

2 [A(t0), A′(t0)] ,

Γ′′′(0) = 1
2A
′′′(t0) + 3

4 [A(t0), A′′(t0)] + 1
2 [A(t0), [A(t0), A′(t0)]] .

(4.5)

We now consider the integral expression (3.4b) for the local error,

L(τ ; t0) =

∫ τ

0

Π(τ, σ)D(σ; t0) dσ . (4.6)

3Not all detailed calculations are given here. The results of these calculations have been veri�ed by computer algebra for a
general matrix A(t) of dimension 2.
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From (4.4a) and (4.6) the fact that, by construction, D(τ ; t0) = O(τ2) and L(τ ; t0) = O(τ3) is not directly
recognizable. A concrete representation is obtained by expanding the defect further; for complexity reasons we
will con�ne ourselves to exactly identifying the asymptotically leading terms. To this end we introduce

D1(τ ; t0) = d
dτD(τ ; t0)−A(t0 + τ)D(τ ; t0) . (4.7a)

We temporarily use a simpli�ed notation, where, e.g., (4.4a) is written in the form

D = S ′ −AS = (Γ−A)S .

In this notation, and with S ′ = AS +D, we obtain

D1 = D′ −AD
=
(
(Γ−A)′ + [Γ, A]

)
S + (Γ−A)D , (4.7b)

and

D1(0; t0) =
(
Γ′(0)−A′(t0)

)
+ [Γ(0), A(t0)] = 0 , (4.7c)

since Γ(0) = A(t0) and Γ′(0) = A′(t0). Thus, D1(τ ; t0) = O(τ).4

For

D2(τ ; t0) = d
dτD1(τ ; t0)−A(t0 + τ)D1(τ ; t0) , (4.8a)

with S ′ = AS +D and D′ = AD +D1 we obtain

D2 = D′1 −AD1

=
(
(Γ−A)′′ + 2 [Γ′, A] + [A+ Γ, A′] + [[Γ, A], A]

)
S

+ 2
(
(Γ−A)′ + [Γ, A]

)
D

+ (Γ−A)D1 ,

(4.8b)

and together with (4.4b),(4.7c),

D2(0; t0) = Γ′′(0)−A′′(t0) . (4.8c)

Together with (4.5) this gives

D2(τ ; t0) = D2(0; t0) +O(τ) = 1
2 [A(t0)), A′(t0)]− 1

4A
′′(t0) +O(τ) . (4.8d)

By integration we �nally obtain

L(τ ; t0) =

∫ τ

0

Π(τ, σ1)D(σ1; t0) dσ1

=

∫ τ

0

Π(τ, σ1)

∫ σ1

0

Π(σ1, σ2)

∫ σ2

0

Π(σ2, σ3) dσ3 dσ2 dσ1D2(0; t0) +O(τ4)

=: I3(τ)︸ ︷︷ ︸
=O(τ3)

D2(0; t0) +O(τ4) .

For problems of the type (1.1), with unitary evolution, the triple integral I3(τ) satis�es ‖I3(τ)‖2 ≤ 1
6τ

3, and
together with (4.8d) we conclude:

4Of course, this also follows directly from D(τ ; t0) = O(τ2).



15

Proposition 4.1. Consider the solution of (1.1) by the exponential midpoint scheme (2.4). If A ∈ C3, then
the local error (3.1) satis�es

‖L(τ ; t0)‖2 ≤ 1
12τ

3
∥∥[A(t0)), A′(t0)]− 1

2A
′′(t0)‖2 +O(τ4) . (4.9)

The leading term of the deviation of the local error estimate. As stated at the beginning of Sec. 4.1,

the deviation L̃(τ ; t0)− L(τ ; t0) consists of two parts.

(i) Asymptotically correct approximation of L(τ ; t0) in terms of the exact defectD(τ ; t0), see (3.7a): From (4.2)
we obtain for p = 2

τ
3 D(τ ; t0)− L(τ ; t0) =

∫ τ

0

1
6 σ(τ − σ)

2 d3

dσ3

(
Π(τ, σ)D(σ; t0)

)
dσ . (4.10a)

Together with
∂
∂σΠ(τ, σ) = −Π(τ, σ)A(t0 + σ) ,

we obtain

d
dσ

(
Π(τ, σ)D(σ; t0)

)
= Π(τ, σ) ∂

∂σD(σ; t0) + ∂
∂σΠ(τ, σ)D(σ; t0)

= Π(τ, σ)
(
∂
∂σD(σ; t0)−A(t0 + σ)D(σ; t0)

)
= Π(τ, σ)D1(σ; t0) ,

and

d2

dσ2

(
Π(τ, σ)D(σ; t0)

)
= d

dσ

(
Π(τ, σ)D1(σ; t0)

)
= Π(τ, σ)

(
∂
∂σD1(σ; t0)−A(t0 + σ)D1(σ; t0)

)
= Π(τ, σ)D2(σ; t0) ,

d3

dσ3

(
Π(τ, σ)D(σ; t0)

)
= d

dσ

(
Π(τ, σ)D2(σ; t0)

)
= Π(τ, σ)

(
∂
∂σD2(σ; t0)−A(t0 + σ)D2(σ; t0)

)
= Π(τ, σ)D3(σ; t0) , (4.10b)

with D1 and D2 as de�ned above, and with

D3(τ ; t0) = d
dτD2(τ ; t0)−A(t0 + τ)D2(τ ; t0) . (4.11a)

By a straightforward but tedious computation we can obtain

D3 = D′2 −AD2

=
(
(Γ−A)′′′ + 3 [Γ′′, A] + [2A+ Γ, A′′]

+ 3 [Γ′, A′] + [[Γ, A], A′] + 3 [[Γ′, A], A] + 2 [[Γ, A′], A] + [[A,A′], A]
)
S

+
(
3 (Γ−A)′′ + 6 [Γ′, A] + [A+ Γ, A′] + 3 [[Γ, A], A]

)
D

+ 3
(
(Γ−A)′ + [Γ, A]

)
D1

+ (Γ−A)D2 ,

(4.11b)

and together with (4.4b), (4.7c), and (4.8c) we conclude

D3(0; t0) = (Γ′′′(0)−A′′′(t0)) + 3 [Γ′′(0), A(t0)] + [2A(t0) + Γ(0), A′′(t0)]

+ 3 [Γ′(0), A′(t0)] + [[Γ(0), A(t0)], A′(t0)] + 3 [[Γ′(0), A(t0)], A(t0)]

+ 2 [[Γ(0), A′(t0)], A(t0)] + [[A(t0), A′(t0)], A(t0)]

+ (Γ(0)−A(t0))(Γ′′(0)−A′′(t0)).

(4.11c)



16

Together with (4.5) this gives

D3(τ ; t0) = D3(0; t0) +O(τ)

= −[A(t0), [A(t0), A′(t0)]] + 3
2 [A(t0), A′′(t0)]− 1

2 A
′′′(t0) +O(τ) .

(4.11d)

By integration we obtain (see (4.10))

1
3τ D(τ ; t0)− L(τ ; t0) =

∫ τ

0

1
6 σ(τ − σ)

2
Π(τ, σ)D3(σ; t0) dσ = O(τ4) ,

For problems of the type (1.1), with unitary evolution, this gives

‖ τ3 D(τ ; t0)− L(τ ; t0)‖ ≤ 1
72τ

4 ‖D3(0; t0)‖+O(τ5) , (4.12)

with D3(0; t0) from (4.11d).

(ii) Asymptotically correct approximation of D(τ ; t0) by D̃(τ ; t0): We have

D̃(τ ; t0)−D(τ ; t0) =
(
Γ̃(τ)− Γ(τ)

)
S(τ ; t0) .

For the approximate defect D̃(τ ; t0), version (3.13a), according to (4.3a) with p = 2,

1
3τD̃(τ ; t0)− 1

3τD(τ ; t0) = 1
36τ

4 [A(t0), [A(t0), A′(t0)]]S(τ ; t0) +O(τ4) . (4.13a)

For the approximate defect D̃(τ ; t0), version (3.15), according to (4.3b),

1
3τ D̃(τ ; t0)− 1

3τ D(τ ; t0) = 1
72τ

3 [A(t0), [A(t0), A′(t0)]]S(τ ; t0) +O(τ4) . (4.13b)

Combining (4.12) and (4.13) we �nally obtain an estimate for the deviation between the numerical realization
of the local error estimate and the true local error:

Proposition 4.2. Consider the solution of (1.1) by the exponential midpoint scheme (2.4). If A ∈ C4, then

the deviation L̃(τ ; t0)− L(τ ; t0) = 1
3τD̃(τ ; t0)− L(τ ; t0) of the local error estimate satis�es

‖L̃(τ ; t0)−L(τ ; t0)‖2 ≤ τ4
(
c ‖[A(t0), [A(t0), A′(t0)]]‖2 + 1

48‖[A(t0), A′′(t0)]‖2 + 1
144‖A

′′′(t0)‖2
)

+O(τ5) , (4.14)

where c = 1
24 for the approximate defect D̃(τ ; t0), version (3.13a), and c = 1

36 for the approximate defect D̃(τ ; t0),
version (3.15).

5. Implementation and numerical example

An algorithmic realization of the fourth-order CFM integrator (2.5) interlaced with the evaluation of the defect-
based error estimator (3.7c), (3.16), (3.17), formulated as pseudo-code, is given as follows:

ψ = S1(τ)ψ0

d = Γ̃1(τ)ψ
d = S2(τ) d // (apply 1 additional matrix exponential)
ψ = S2(τ)ψ (= ψ1)

d = d+ Γ̃2(τ)ψ −A(t0 + τ)ψ // (= approximative defect of ψ1)
` = τ d/5 // (= local error estimate for ψ1, scheme of order p = 4)
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The other versions considered are implemented in a similar fashion.
We now brie�y illustrate our theoretical results by computing the empirical orders of the local error and the
deviation of the error estimator. To determine the error experimentally, we resort to a reference solution which
was computed on a very �ne temporal grid.
The test problem we consider is a Hubbard model describing the movement and interaction of electrons within
an oxide solar cell [16], with A(t) ∈ C400×400. The explicit time-dependence here originates from an external
electric �eld associated with a photon. The Hamiltonian can be represented by

H(t) = D + f(t)HS + i g(t)HA,

with a real diagonal matrix D, a real symmetric matrix HS and a real antisymmetric matrix HA. The oscillating
and quickly attenuating electric �eld generated by the impact of a photon in this model makes adaptive time-
stepping a relevant issue. Thus, the problem can serve to illustrate our theoretical results on local error
estimation.
In the following tables, we give the Euclidian norms of the local error L(τ ; t0) and of the deviation L̃(τ ; t0) −
L(τ ; t0) of defect-based local error estimators L̃(τ ; t0). As initial state we choose the ground state of the system
at t0 = 0.
Tables 2 and 3 give the results for the exponential midpoint scheme, where the evaluation of the integrals
appearing in the speci�cation of the error estimator is realized by Taylor quadrature (3.10b) and Hermite
quadrature (3.14), respectively. As to be expected from the analysis given in Sec. 4, see Proposition 4.2, the
latter variant is more precise by a factor ≈ 2.

τ ‖L(τ ; t0)‖2 p ‖L̃(τ ; t0)− L(τ ; t0)‖2 p
6.250e−02 7.357e−05 2.97 1.794e−05 4.03
3.125e−02 9.120e−06 3.01 1.090e−06 4.04
1.563e−02 1.130e−06 3.01 6.686e−08 4.03
7.813e−03 1.405e−07 3.01 4.135e−09 4.02
3.906e−03 1.750e−08 3.00 2.570e−10 4.01

Table 2. Local error and deviation of the defect-based error estimator for the exponential

midpoint scheme, where Taylor quadrature (3.10b) (p = 2) is used for the evaluation of D̃.

τ ‖L(τ ; t0)‖2 p ‖L̃(τ ; t0)− L(τ ; t0)‖2 p
1.250e−01 5.759e−04 2.71 6.859e−05 4.69
6.250e−02 7.357e−05 2.97 3.908e−06 4.13
3.125e−02 9.120e−06 3.01 2.564e−07 3.93
1.563e−02 1.130e−06 3.01 1.666e−08 3.94
7.813e−03 1.405e−07 3.01 1.064e−09 3.97
3.906e−03 1.750e−08 3.00 6.723e−11 3.98

Table 3. Local error and deviation of the defect-based error estimator for the exponential

midpoint scheme, where the trapezoidal quadrature rule (3.14) is used for the evaluation of D̃.

Tables 4 and 5 give the results for the fourth-order CFM-type integrator (2.5a), where the evaluation of the
integrals appearing in the speci�cation of the error estimator is realized by Taylor quadrature (3.10b) (p = 4)
and the modi�ed Hermite quadrature (3.18), respectively.
Tables 6 and 7 give the results for the fourth-order classical Magnus integrator (2.11), where the evaluation
of the integrals appearing in the speci�cation of the error estimator is realized by Taylor quadrature (3.10b)
(p = 4) and the modi�ed Hermite quadrature (3.18), respectively.
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τ ‖L(τ ; t0)‖2 p ‖L̃(τ ; t0)− L(τ ; t0)‖2 p
6.250e−02 2.309e−07 5.04 2.619e−08 6.06
3.125e−02 7.146e−09 5.01 3.962e−10 6.05
1.563e−02 2.223e−10 5.01 6.073e−12 6.03
7.813e−03 6.931e−12 5.00 9.324e−14 6.03
3.906e−03 2.164e−13 5.00 1.374e−15 6.08

Table 4. Local error and deviation of the defect-based error estimator for (2.5a), where Taylor

quadrature (3.10b) (p = 4) is used for the evaluation of D̃.

τ ‖L(τ ; t0)‖2 p ‖L̃(τ ; t0)− L(τ ; t0)‖2 p
6.250e−02 2.309e−07 5.04 2.339e−08 6.07
3.125e−02 7.146e−09 5.01 3.544e−10 6.04
1.563e−02 2.223e−10 5.01 5.442e−12 6.03
7.813e−03 6.931e−12 5.00 8.358e−14 6.02
3.906e−03 2.164e−13 5.00 1.249e−15 6.06

Table 5. Local error and deviation of the defect-based error estimator for (2.5a), where the

modi�ed trapezoidal quadrature rule (3.18) is used for the evaluation of D̃.

τ ‖L(τ ; t0)‖2 p ‖L̃(τ ; t0)− L(τ ; t0)‖2 p
6.250e−02 1.328e−07 4.67 7.132e−08 6.01
3.125e−02 4.733e−09 4.81 1.073e−09 6.05
1.563e−02 1.569e−10 4.91 1.633e−11 6.04
7.813e−03 5.041e−12 4.96 2.508e−13 6.02
3.906e−03 1.593e−13 4.98 3.699e−15 6.08

Table 6. Local error and deviation of the defect-based error estimator for (2.11), where Taylor

quadrature (3.10b) (p = 4) is used for the evaluation of D̃.

τ ‖L(τ ; t0)‖2 p ‖L̃(τ ; t0)− L(τ ; t0)‖2 p
6.250e−02 1.328e−07 4.67 1.968e−08 6.11
3.125e−02 4.733e−09 4.81 2.879e−10 6.09
1.563e−02 1.569e−10 4.91 4.323e−12 6.06
7.813e−03 5.041e−12 4.96 6.546e−14 6.05
3.906e−03 1.593e−13 4.98 1.132e−15 5.85

Table 7. Local error and deviation of the defect-based error estimator for (2.11), where the

trapezoidal quadrature rule (3.14) is used for the evaluation of D̃.
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