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Abstract

We compare the practical performance of adaptive splitting methods for the solu-
tion of nonlinear Schrödinger equations. Different methods for local error estima-
tion are assessed with respect to their accuracy and efficiency in conjunction with
promising strategies for step-size adaptation. The numerical comparisons com-
prise the cubic nonlinear Schrödinger equation with a blow-up solution, systems
of coupled nonlinear Schrödinger equations, a rotational and a Gross–Pitaevskii
equation under a highly oscillatory potential inducing wave chaos, and a quantum
control model with a time-dependent potential. Finally, for nonlinear wave equa-
tions we demonstrate the enhanced computational stability ensuing from adaptive
step selection strategies close to the border mandated by the CFL condition.
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1. Introduction

We compare time integration methods for nonlinear Schrödinger equations of
the type

i∂tψ(t) = Aψ(t)+B(ψ(t)) = H(ψ(t)), ψ(0) = ψ0, (1.1)

on a Banach space B. Here, A : D ⊆B→B is a self-adjoint differential operator
and B a generally unbounded nonlinear operator.

Equations of this type commonly arise from model reductions of high-
dimensional quantum dynamical systems serving to make quantum simulations
computationally tractable. Examples of such model reductions are the Gross-
Pitaevskii equation (GPE) for Bose-Einstein condensates (BEC) [1], which con-
stitutes a meanfield theory for ultracold dilute bosonic gases, the multicon-
figurational time-dependent Hartree for bosons (MCTDHB) method for ultra-
cold bosonic atoms [2], the multiconfigurational time-dependent Hartree-Fock
(MCTDHF) method [3, 4, 5] and its most current extension, the time-dependent
complete-active-space self-consistent-field (TD-CASSCF) method for electron
dynamics in atoms and small molecules [6], and time-dependent density func-
tional theory (TDDFT) for extended systems such as large molecules, nanostruc-
tures and solid-state systems [7]. All of these ab initio methods imply (systems
of) nonlinear Schrödinger equations for the orbitals which are highly sensitive to
the accuracy of numerical integration, and whose propagation constitutes a major
challenge.

Numerical discretization in space in the context of the method of lines gives
rise to large systems of nonlinear ODEs. In the numerical time propagation, the
number of operations per time step and the overall number of time steps can soon
become prohibitive. In some applications, a significant speed-up will be critical
for the feasibility of a simulation. A method which optimizes the time-steps with
reliable error control is thus essential. In this way systems with larger numbers
of particles will become tractable. A similar study of adaptivity within splitting
methods has been conducted earlier for parabolic problems in [8].

Different approaches to the numerical solution of quantum dynamical systems
have been discussed in the literature. While for the ab initio solution of the lin-
ear two-particle Schrödinger equation the short iterative Lanczos algorithm has
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proven to be very efficient [9], it is not suitable for nonlinear orbital equations es-
pecially in the presence of strong nonlinearity. Often Runge-Kutta algorithms are
used within multiconfigurational methods because of their robustness and broad
applicability [6, 10]. Other splitting methods than those proposed below have
been used, e.g., in [11] where the orbital equations of motion are split from the
equations of motion for the configuration amplitudes and a matrix exponentiation
algorithm is applied.

Adaptive time-splitting methods promise advantages both with respect to the
computational effort in each time step and with respect to the number of required
time-steps to achieve a prescribed accuracy. The underlying idea of adaptive time-
splitting methods is the following: Time-splitting methods are based on multi-
plicative combinations of the partial flows of the vector fields, where the coeffi-
cients in this composition are determined such that a prescribed order of consis-
tency is obtained [12]. Quantum systems and the associated reduced model equa-
tions comprise two or more vector fields of different stiffness. If these are treated
separately, the resulting subproblems can typically be integrated with more ef-
ficient schemes. For instance, for the cubic nonlinear Schrödinger equation, the
kinetic part can be integrated efficiently after (pseudo)spectral space discretization
by exponentiation of a diagonal matrix, while the nonlinear part allows an exact
integration of the resulting ordinary differential equations in real space. Thus, the
numerical effort effectively reduces to transformations between real and frequency
space, which can be implemented with low cost also in a parallel environment by
fast transforms like fast Fourier transform (FFT), sine transform, etc. In contrast,
explicit finite difference methods like Runge–Kutta or linear multistep methods
typically suffer from instabilities unless time-steps are very small, while implicit
methods like Crank-Nicholson have attractive stability and conservation proper-
ties, but the computational effort for the solution of the nonlinear equations is a
serious drawback. The benefits of splitting methods as compared to competing
time integrators have been extensively discussed in the mathematics literature in
recent years. A comprehensive overview of recent investigations of splitting and
finite difference methods for BEC is given in [13], which summarizes most of
the studies conducted in this field. It turns out that the Crank-Nicholson finite
difference method preserves most invariants like reversibility, mass and energy
conservation and it is unconditionally stable. However, the computational cost for
this fully implicit method is considerable, and the conservation properties only
hold up to the accuracy of the nonlinear solver. Semi-implicit relaxation meth-
ods which only treat the linear term implicitly share the conservation properties
if only a cubic nonlinearity is present and the kinetic part is treated implicitly,
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but they are still computationally expensive and suffer from stability limitations.
Semi-implicit finite difference schemes lose most of the desired properties. Time-
splitting methods in conjunction with (pseudo)spectral methods (either based on
Fourier or Sine bases) are overall concluded to be the most successful discretiza-
tion schemes in the presence of smooth solutions. They are unconditionally stable,
conserve norm, a (modified) energy functional and dispersion, which is not the
case for many other time-stepping schemes. The spectral accuracy of the space
discretization is only advantageous in the presence of regular solutions, however.
For unsmooth or random spatial profiles, splitting methods in conjunction with
finite difference spatial discretizations may be more efficient (see [14]). Finite
element spatial discretizations, which are among the most popular and successful
methods for problems on finite (irregular) domains where the solutions suggest
to realize spatial adaptivity, are not the first choice in our context, as typically
spatial adaptivity is less important than spectral accuracy. Extensive numerical
comparisons in the literature additionally confirm the accuracy and efficiency of
splitting methods for various quantum mechanical models under a number of dif-
ferent spatial discretizations. In an earlier work [15] it was concluded that a split-
step Fourier method performs best overall for a number of test problems, and in
[16] that time-splitting in conjunction with different spatial discretizations is most
accurate and efficient and has desirable conservation properties. Recent improve-
ments of this approach are given by non-uniform spectral spatial discretizations
realized via non-uniform fast Fourier transforms (NUFFT), which can account for
spatial variations in the problem smoothness [17, 18, 19]. The particular situa-
tion of highly oscillatory Schrödinger equations has recently been given special
attention in the works [20, 21]. The potential advantages of splitting into more
than two operators, which will also be briefly discussed in the present paper, are
investigated in [22] for a magnetic Schrödinger equation, where a convergence
proof is indicated for a first-order splitting into three operators, and in [23], which
introduces four-operator splittings of order up to four with real or complex coeffi-
cients applied to the semiclassical Schrödinger equation. Overall, the theoretical
and experimental evidence for the superior performance of time-splitting methods,
which are usually used in conjunction with (pseudo)spectral space discretizations,
is overwhelming in the mathematical literature.

The efficiency of the time-discretization can be improved if high-order time
propagators are employed. Adaptive choice of the time-steps promises a fur-
ther reduction in the computational effort. To provide a solid basis for such an
approach, a theoretical analysis of the error structure is essential. A rigorous
mathematical error analysis of splitting methods was first given in [24] for low
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order methods applied to linear Schrödinger equations. An extension to higher-
order schemes is provided by [25]. The nonlinear setting was first analyzed for
the second-order Strang splitting in [26], and a convergence proof for high-order
methods which also covers the cubic nonlinear Schrödinger equation and the
equations of motion associated with MCTDHF is given in [4]. Theoretical er-
ror bounds for rotating BEC by a Fourier–Laguerre–Hermite splitting method are
given in [27], while fully implicit finite difference methods are analyzed in [28].
An alternative theoretical framework for the analysis of splitting methods based
on the defect of the numerical solution was recently developed in [29] for linear
problems and also extended to the nonlinear case in [30]. The convergence was
analyzed for evolution equations of Schrödinger type. This also includes the con-
struction and theoretical analysis of a posteriori error estimators for the purpose
of designing adaptive schemes. The defect-based approach, which is described in
Section 3.2, is a universally applicable alternative to more special constructions
based on embedded pairs of schemes [31], see Section 3.1. The latter are chal-
lenging to construct since a large system of nonlinear algebraic equations has to
be solved, but the resulting schemes are cheaper to realize for high-order splitting
methods. Another class of error estimates we consider are based on the property
of the splitting coefficients being palindromic (Section 3.3).

Based on the local error estimates, successful time-stepping strategies can be
implemented. To ensure a stable and efficient procedure, state-of-the-art step-
size choice is based on firm theoretical ground by recent investigations based on
digital filters from signal processing and control theory, see [32]. These methods
have also been demonstrated to enhance computational stability [33] and have the
potential to provide advantages for critical computations. We have observed some
benefits in the presence of wave chaos in example (4.3), see Section 5.

To assess the applicability and efficiency of our numerical methods, we will
resort to a number of low-dimensional model problems which are representa-
tive of the encountered structure, however. These comprise the cubic nonlinear
Schrödinger equation [34], the Gross–Pitaevskii equation for a rotating Bose–
Einstein condensate [14] and under a highly oscillatory potential [35], a two-
component system modelling the propagation of pulses with equal mean fre-
quencies in birefringent nonlinear fibers [36], and a model of quantum control
of atomic systems [37].

In the final Section 6, we will demonstrate the successful application of our
methods to nonlinear wave equations, which serve as suitable models to demon-
strate the contribution of adaptive step-size choice to computational stability near
the limit imposed by a CFL condition (the Courant–Friedrichs–Levy condition
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represents a limit of the time-step in terms of the spatial discretization parameter
which is generally necessary for the stability of time integrators for hyperbolic
evolution equations).

2. Splitting methods

At the (time-)semi-discrete level, s-stage exponential splitting methods for the
integration of (1.1) use multiplicative combinations of the partial flows EA(t,u) :
u 7→ u(t) = etAu and EB(t,u) : u 7→ u(t) with u′(t) = B(u(t)), u(0) = u. For a
single step (0,u0) 7→ (h,u1) with time-step t = h, this reads

u1 := S (h,u0) = EB(bsh, ·)◦EA(ash, ·)◦ . . .◦EB(b1h, ·)◦EA(a1h,u0), (2.1)

where the coefficients a j,b j, j = 1 . . .s are determined according to the require-
ment that a prescribed order of consistency is obtained [12].

Splitting into three terms. Splitting into more than two operators, which has first
been analyzed theoretically for linear Schrödinger equations in [38], can also be
beneficial when this is suggested by the special structure of the right-hand side
of (1.1). A particular situation which suggests such a splitting is the following:
For a problem with time-dependent coefficients, where A = A(t), B = B(t,ψ),
the independent variable t may be frozen over certain substeps in order to obtain
subproblems which can be solved effectively, see [39]. To this end the given
problem is reformulated as an autonomous system, where t formally becomes a
dependent variable. In this way such a problem fits into the general context of
splitting methods and can be analyzed on the basis of the general abstract theory.
We will discuss such a problem specified in Section 4.4. Finally, nonlinear terms
which cannot be explicitly integrated, e.g. if products of unknowns are involved,
can be treated in a similar way.

Collection of methods. We have compiled a webpage with the most successful
splitting formulae from the literature and a large number of optimized methods
we constructed at

http://www.asc.tuwien.ac.at/~winfried/splitting/

which we will furtheron refer to as [40]. We will refrain from explicitly stating
splitting formulae here for brevity.
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3. Local error estimators

In this section, we briefly describe three classes of local error estimators which
serve as our basis for adaptive time-stepping here and which have different advan-
tages depending on the context in which they are applied. Embedded pairs of
splitting formulae have been introduced in [31] and are based on reusing a num-
ber of evaluations from the basic integrator. A defect-based error estimator has
been proposed and analysed in [29, 30, 38, 41]. For palindromic pairs of formu-
lae, an asymptotically correct error estimator can be computed at the same cost as
for the basic method, see [42]. The employed error estimates are asymptotically
correct, i.e., the deviation of the error estimator from the true error tends to zero
faster than does the error.

3.1. Embedded formulae
In [31], pairs of splitting schemes of orders p and p+1 are specified. The idea

is to select a controller S̄ of order p+1 and to construct a worker S of order p for
which a maximal number of compositions coincide with those of the controller.
To construct pairs offering an optimal balance between cost and accuracy, we fix
a ‘good’ controller of order p+ 1 and wish to adjoin to it a ‘good’ worker of
order p. Since the number of compositions s̄ in the controller will be higher than
the number of compositions s in the worker, we can select an optimal embedded
worker S from a set of candidates obtained by flexible embedding, where the
number of coinciding coefficients is not a priori fixed. The idea is expanded in
detail in [42], where optimized methods are determined. In this paper, we will
focus on the pair Emb 4/3 AK p of orders four and three.

3.2. Defect-based estimators
In [29, 30, 38, 41], asymptotically correct error estimators based on the defect

D(t,u(t)) := ∂tS (t,u(t))−AS (t,u(t))−B(S (t,u(t)))

have been constructed and analysed. In order to construct an error estimator as-
sociated with a splitting method of order p ≥ 1, an integral representation of the
local error involving D is approximated by means of an Hermite quadrature for-
mula. Due to the fact that the validity of the p-th order conditions ensures that
the first p−1 derivatives of D vanish at t = 0, this leads to a local error estimator
involving a single evaluation of the defect,

P(h,u) = 1
p+1 hD(h,u) ≈ L (h,u) . (3.1)
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This device works generally for splittings of any order into an arbitrary number
of operators if Fréchet derivatives of the flows are available, see [43] (the Fréchet
derivative of EA(t,u) with respect to the second argument is subsequently denoted
by ∂2EA(t,u) and likewise for all other flows). Algorithmically, for a splitting with
s compositions the defect d = D(h,u) can be computed simultaneously with the
update of the solution u as follows:

d = 0
for k = 1 : s

d = d +akA(u)
d = ∂2EA(akh,u) ·d
u = EA(akh,u)
d = ∂2EB(bkh,u) ·d
u = EB(bkh,u)

d = d +

{
bkB(u), k < s

(bk−1)B(u), k = s
end
d = d−A(u)

3.3. Palindromic formulae
Let S be a palindromic scheme of odd order p (in the sense of [42]). In this

case, the leading error terms of S and its adjoint S ∗ are identical up to the factor
−1. Therefore, the averaged additive scheme

S̄ (h,u) = 1
2

(
S (h,u)+S ∗(h,u)

)
(3.2)

is a method of order p+1,1 and

S (h,u)− S̄ (h,u) = 1
2

(
S (h,u)−S ∗(h,u)

)
provides an asymptotically correct local error estimate for S (h,u). In this case
the additional effort for computing the local error estimate is identical with the
effort for the worker S but not higher as is the case for embedded pairs. This
principle is limited to palindromic splitting methods of odd order, however. Since
the error estimator is easy to construct and evaluate in this case, in addition to the
method PP 3/4 A of basic order 3, we also employ the pair PP 5/6 A of orders
5/6.

1For the simplest case of the Lie-Trotter scheme this has already been observed in [44].
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3.4. Step-size selection
Based on a local error estimator, the step-size is adapted such that the tolerance

is expected to be satisfied in the following step. If hold denotes the current step-
size, the next step-size hnew in an order p method is predicted as (see [45, 46])

hnew = hold ·min
{

αmax,max
{

αmin,α
( tol

P(hold)

) 1
p+1
}}

, (3.3)

where α = 0.9, αmin = 0.25, αmax = 4.0, and P(hold) is an asymptotically correct
estimator for the local error arising in the previous time-step. This simple strategy
incorporates safety factors to avoid an oscillating and unstable behavior.

More elaborate strategies based on digital filters and control theory are put for-
ward in [32, 33, 47, 48]. As one example, we will also test a strategy incorporating
a longer history, namely, the two previous step-sizes h−1,h−2, and associated er-
ror estimates P(h−1), P(h−2) enter the formula for the calculation of the new
step-size,

h = h−1 ·min
{

αmax,max
{

αmin,α
( tol

P(h−1)

) β1
p+1
( tol

P(h−2)

) β2
p+1
(h−1

h−2

)−α1
}}

,

(3.4)
again with α = 0.9, αmin = 0.25, αmax = 4.0, and with β1 = β2 = α1 = 0.25.

3.5. Global error estimator
Once a local error estimate is available, it can also be used to compute an

estimate for the global error accumulated in the course of the integration. The
general, heuristic idea (defect integration) is due to [49], which can be adapted to
the current context: We integrate the local error estimate using a simple auxiliary
scheme resulting in the desired global error estimate in an efficient way, since only
a cheap low-order method has to be applied twice in addition to the expensive
high-order integrator.

Consider the computational grid {tν , ν = 0,1,2, . . .} chosen either a priori
or in an adaptive way, with time-steps hν = tν − tν−1. The numerical solution
values obtained are denoted by uν , and εν denotes the global error estimate to be
computed.

Along with the computed splitting approximation uν , we perform two simple
integrations in parallel, e.g., using the Lie-Trotter scheme as an auxiliary integra-
tor. Starting from U0 = Ũ0 = u0 we compute

Uν = Saux(tν−1,Uν−1,hν) , (3.5a)
Ũν = Saux(tν−1,Ũν−1,hν)+P(tν ,uν) , (3.5b)
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for ν = 1,2, . . .. Here, Saux(tν−1, ·,hν) is the local flow of the auxiliary scheme,
and P(tν ,uν) ≈L (tν ,uν) denotes a local error estimate computed for the step
(tν−1,uν−1) 7→ (tν ,uν). Now we define the global error estimate as

εν = Ũν −Uν , ν = 1,2, . . . (3.6)

To motivate the design of this estimator, we note that by the definition of
L (tν ,uν) =S (tν−1,uν−1,hν)−EH(tν−1,uν−1,hν) as the difference of two local
flows, we have

u(tν) = EH(tν−1,u(tν−1),hν) , (3.7a)
uν = EH(tν−1,uν−1,hν)+L (tν ,uν) , (3.7b)

such that comparing (3.7) with (3.5) we may indeed expect

εν = Ũν −Uν ≈ uν −u(tν) , ν = 1,2, . . . (3.8)

Evaluation of εν is rather cheap, because the main effort lies in the evaluation of
P(tν ,uν) which is already available. εν is propagated from tν−1 to tν once uν has
been accepted.

A further simplification is achieved by linearization, i.e., defining εν by prop-
agation of the linearized auxiliary scheme (with ε0 = 0)

εν = ∂2 Saux(tν−1,uν−1,hν) · εν−1 +P(tν ,uν) , ν = 1,2, . . . , (3.9)

where, e.g., for Saux = SLie,

∂2 SLie(tν−1,uν−1,hν)

= ∂2 EB(tν−1,EA(tν−1,uν−1,hν),hν) ·∂2 EA(tν−1,uν−1,hν) .

Here we do not give an analysis of the asymptotical correctness of this global error
estimate. An example of its performance is included in Section 6.

4. Models from quantum dynamics

In this section, we give a number of test examples which are representative of
the challenges encountered by high-order adaptive time integrators.

10



4.1. The cubic NLS
The cubic nonlinear Schrödinger equation [34] is given by

i∂tψ(x, t) =− 1
2∆ψ(x, t)+κ |ψ(x, t)|2 ψ(x, t) , (4.1a)

ψ(x,0) = ψ0(x) , x ∈ R3 , t > 0 , (4.1b)

with κ =−1 and the initial condition chosen as

ψ(x) =
2

∑
j=1

a j e−ib jx

cosh(a j(2x− c j))
, x ∈ [−16,16] , (4.1c)

with a1 = a2 = 2, b1 = 1, b2 = 3, c1 = 5, c2 =−5. The cubic NLS has been treated
earlier by our methods in [30], a theoretical analysis is given in [4]. The initial
condition we prescribe here leads to a solution with two solitons which eventually
cross [50], posing a challenge for an adaptive step-size selection algorithm and
thus providing a serious benchmark for adaptive time-stepping, in contrast to the
smoother solutions considered previously.

4.2. A two-component system
We consider a two-component system modelling the propagation of pulses

with equal mean frequencies in birefringent nonlinear fibers [36],

i
(

∂ψ1

∂ t
+δ

∂ψ1

∂x

)
+

1
2

∂ 2ψ1

∂x2 +
(
|ψ1|2 + e |ψ2|2

)
ψ1 = 0,

i
(

∂ψ2

∂ t
−δ

∂ψ2

∂x

)
+

1
2

∂ 2ψ2

∂x2 +
(
e |ψ1|2 + |ψ2|2

)
ψ2 = 0,

(4.2)

with exact solution (a pair of solitons)

ψ1(x, t) =

√
2β

1+ e
sech

(√
2β (x− vt)

)
ei((v−δ )x+(β−(v2−δ 2)/2) t),

ψ2(x, t) =

√
2β

1+ e
sech

(√
2β (x− vt)

)
ei((v+δ )x+(β−(v2−δ 2)/2) t),

which is exponentially decreasing with |x|. We start at t = 0, the parameters are
chosen as δ = 0.5, β = 1.0, v = 1.1, and e = 0.8. We impose periodic boundary
conditions on the interval [−50,70]. The problem has been solved by high-order
splitting methods in [42].
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4.3. The Gross–Pitaevskii equation with highly oscillatory potential
The Gross–Pitaevskii equation under a highly oscillatory potential inducing

wave chaos is given for x ∈ R by

i∂tψ(x, t) =− 1
2∆ψ(x, t)+V (x)ψ(x, t)+g|ψ(x, t)|2 ψ(x, t). (4.3a)

The system parameters which are based on the experimental realization [2] lead to
a rather large nonlinearity of g≈ 400 (in our implementation, we chose g = 390)
in units of the harmonic trap in which the BEC is initially created. The initial
condition

ψ(x,0) = ψ0(x) (4.3b)

is determined as the ground state of the harmonic oscillator, i.e. for V (x) = 1
2x2.

For the initial state, see Figure 5.2. The harmonic trap is suddenly switched off,
and at the same time a periodic potential V (x) = v0 cos(kx), v0 = 1.4, k ≈ 11.46
is switched on in which the BEC then expands.

4.4. Quantum control
A model arising in quantum control of atomic systems which is discussed in

[37] introduces a potential which explicitly depends on time:

i∂tψ(x, t) = ε∆ψ(x, t)+ ε
−1V (x, t)ψ(x, t) , (4.4a)

ψ(x,0) = ψ0(x) , x ∈ R3 , t > 0 , (4.4b)

with V (x, t) and the initial condition chosen as:

ψ0(x) = (δπ)−
1
4 e

i k0(x−x0)
δ

− (x−x0)
2

2δ

V (x, t) = V0(x)+ρ(3t−1)ρ(sin(2π(x− t)))
V0(x) = ρ(4x)sin(20πx)

ρ(x) =

{
e
−1

1−x2 , |x|< 1
0, otherwise,

where x0 = −0.3, k0 = 0.1, δ = 10−3 and ε = 2−8. With these parameters the
initial condition is

ψ(x,0) = (10−3
π)−1/4 e100i(x+0.3)−500(x+0.3)2

, (4.4c)

and the system is closed by periodic boundary conditions on [−1,1].

12



4.5. Rotational Gross–Pitaevski equation
The Gross–Pitaevskii equation for a rotational Bose–Einstein condensate [14]

is given by

i∂tψ(x, t) =
(
− 1

2∆+Vext(x)−ΩLz +β
∣∣ψ(x, t)

∣∣2)ψ(x, t) , (4.5a)

subject to asymptotic boundary conditions on the unbounded domain and an initial
condition. For the sake of computation time, we consider the problem in two di-
mensions only, x = (x,y). Vext : R2→R denotes an external real-valued potential,
which we assume to comprise a scaled harmonic potential that is symmetric with
respect to the (x,y)-components and an additional sufficiently regular potential
V : R2→ R

Vext(x) = 1
2 γ (x2 + y2)+V (x) , γ > 0 . (4.5b)

The rotation term involves the angular momentum rotation speed Ω ∈ R and the
angular momentum operator

Lz =− i
(
x∂y− y∂x

)
. (4.5c)

Besides, we denote by β ∈R the interaction constant arising in the cubic non-
linearity. The parameters are chosen as

γ = 0.8 , Ω = 0.5 , β = 100 , (4.5d)

ψ(x,y,0) = 1√
π
(x+ iy)e−

1
2 (x

2+y2) , (x,y) ∈ R2 . (4.5e)

This problem has first been solved by a Fourier–Laguerre–Hermite spectral
method in [51], see also [52]. This allows to pose the asymptotically correct
boundary conditions on the full space. Moreover, this example was solved in [53]
under (artificial) periodic boundary conditions allowing a highly efficient dimen-
sional splitting into three operators, see also [14]. In [54] this problem is treated by
the Crank-Nicolson method, which we do not consider in our present comparison
of adaptive splitting methods.

5. Numerical comparisons

Now we compare the performance of the most promising splitting methods
in conjunction with some of the introduced error estimation and step selection
methods for the models in Section 4. Runtime was measured throughout on an
Intel Xeon E5-2670 with 8 cores, with the exception of problem (4.5), where
computations were carried through on the Vienna Scientific Cluster.
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5.1. Splitting into two operators
Cubic Schrödinger equation (4.1). We first compare the performance of differ-
ent splitting methods for the cubic Schrödinger equation (4.1). We compare the
computational effort for the methods Emb 4/3 AK p, PP 3/4 A of order 3 and PP

5/6 A of order 5, endowed with an asymptotically correct error estimator, respec-
tively. This is given from the construction of the palindromic pairs or embedding
idea, but additionally we use each integrator in conjunction with the defect-based
error estimator. We use an underlying space discretization with N = 1024 Fourier
modes in one spatial dimension.

It was found that the method with the least computational effort per step is PP
3/4 A, where 10000 equidistant steps required 1.37 seconds for the integrator and
2.73 seconds with the error estimator. For the other methods, 2.29 seconds / 3.19
seconds were measured for Emb 4/3 AK p and 3.68 / 7.07 seconds for PP 5/6

A, see Table 5.1.

Method 10000 steps 10000 steps with estimator
Emb 4/3 AK p 2.286 3.190

PP 3/4 A 1.370 2.731
PP 5/6 A 3.679 7.074

Emb 4/3 AK p (defect) 2.290 5.788
PP 3/4 A (defect) 1.633 3.583
PP 5/6 A (defect) 3.806 7.687

Table 5.1: Comparison of the computation costs of Emb 4/3 AK p, PP 3/4 A, and PP 5/6 A for
(4.1).

In an adaptive setting, the higher order however pays off when a strict tol-
erance is prescribed, for tolerances 10−8 and 10−10 the method PP 5/6 A was
the fastest, only for the mildest requirement of 10−5 the other methods proved
competitive. PP 5/6 A provided the fastest integration, and adaptive step-size
selection is more efficient in each case. The reason is obviously the challenging
solution dynamics when the solitons cross, as there the adaptively chosen step-
size drops abruptly. The comparison here and also for the other examples below
is with respect to an equidistant grid based on the smallest step-size that the adap-
tive algorithm generated. We observe furthermore that the defect-based error es-
timator is invariantly more expensive than the palindromic pairs in each step, but
recall that this is applicable in conjunction with any splitting scheme. Still, for the
methods of orders 3/4, the embedding approach proved more efficient, which can
be attributed to a smaller leading error term of the integrator, see the local error
measures of 0.06 versus 00.25 listed at [40]. The results are given in Table 5.2.
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There and later in the paper, the columns give the number of steps ‘# adapt’ re-
quired to reach the prescribed tolerance in an adaptive computation, ‘# equidist’
the number of equidistant steps required to achieve the same accuracy, and the
time in seconds ‘time adapt’ respectively ‘time equidist’ the computations took in
the two settings, respectively. The step-sizes generated by the adaptive procedure
based on the method PP 5/6 A are shown in Figure 5.1. The drop in the step-size
is clearly visible at the time where the solitons cross.

Method # adapt # equidist time adapt time equidist
Emb 4/3 AK p, TOL = 10−5 275 1070 0.140 0.322

PP 3/4 A, TOL = 10−5 438 1749 0.186 0.333
PP 5/6 A, TOL = 10−5 156 501 0.167 0.240

Emb 4/3 AK p (defect), TOL = 10−5 265 1034 0.159 0.261
PP 3/4 A (defect), TOL = 10−5 438 1749 0.187 0.305
PP 5/6 A (defect), TOL = 10−5 189 733 0.203 0.350

Emb 4/3 AK p, TOL = 10−8 1536 6005 0.716 1.654
PP 3/4 A, TOL = 10−8 2478 9900 0.924 1.606
PP 5/6 A, TOL = 10−8 504 2005 0.494 0.901

Emb 4/3 AK p (defect), TOL = 10−8 1495 5847 0.845 1.401
PP 3/4 A (defect), TOL = 10−8 2478 9900 0.993 1.648
PP 5/6 A (defect), TOL = 10−8 567 2240 0.606 1.015

Emb 4/3 AK p, TOL = 10−10 4854 18986 2.092 5.034
PP 3/4 A, TOL = 10−10 7837 31311 3.025 5.005
PP 5/6 A, TOL = 10−10 1136 4515 1.074 2.072

Emb 4/3 AK p (defect), TOL = 10−10 4728 18492 2.531 4.270
PP 3/4 A (defect), TOL = 10−10 7837 31311 3.003 5.100
PP 5/6 A (defect), TOL = 10−10 1174 4653 1.194 2.047

Table 5.2: Comparison of the efficiency of Emb 4/3 AK p, PP 3/4 A, and PP 5/6 A for (4.1)
using the step-size selection algorithm (3.3). The tolerances were 10−5 (top), 10−8 (middle) and
10−10 (bottom), respectively.

For this example, we also assess the refined step adaptation strategy (3.4). The
results are given in Table 5.3. We observe that in this situation, the strategy does
not provide an advantage in most of the cases.

Coupled Schrödinger equations (4.2). We now compare our adaptive splitting
schemes when applied to (4.2). As expected, the comparison of the computa-
tional effort (runtime in seconds) of our methods when applied to the coupled
Schrödinger equations (4.2) for 1000 equidistant steps gives the same picture as
for (4.1), PP 3/4 A is cheapest, and application of the error estimator roughly
doubles the computation time, see Table 5.4. Throughout, we use an underlying
space discretization with N = 1024 Fourier modes in one spatial dimension.

In an adaptive setting, we observe in Table 5.5 that nonuniform time grids
provide an advantage in computational effort which ranges between a factor 1.5
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Figure 5.1: Solution of (4.1) (top), and step-sizes generated by an adaptive procedure based on PP

5/6 A with tolerance 10−10 (bottom).

Method # adapt # equidist time adapt time equidist
Emb 4/3 AK p, TOL = 10−5 313 1218 0.140 0.291

PP 3/4 A, TOL = 10−5 487 1945 0.177 0.300
PP 5/6 A, TOL = 10−5 168 528 0.166 0.223

Emb 4/3 AK p (defect), TOL = 10−5 294 1148 0.153 0.260
PP 3/4 A (defect), TOL = 10−5 487 1945 0.162 0.269
PP 5/6 A (defect), TOL = 10−5 210 815 0.213 0.317

Emb 4/3 AK p, TOL = 10−8 1751 6850 0.643 1.456
PP 3/4 A, TOL = 10−8 2753 11000 0.959 1.778
PP 5/6 A, TOL = 10−8 565 2251 0.540 1.017

Emb 4/3 AK p (defect), TOL = 10−8 1661 6497 0.905 1.515
PP 3/4 A (defect), TOL = 10−8 2753 11000 1.046 1.767
PP 5/6 A (defect), TOL = 10−8 626 2472 0.629 1.111

Emb 4/3 AK p, TOL = 10−10 5536 21659 2.341 4.941
PP 3/4 A, TOL = 10−10 8707 34790 2.890 5.642
PP 5/6 A, TOL = 10−10 1265 5028 1.658 2.258

Emb 4/3 AK p (defect), TOL = 10−10 5252 20547 2.600 4.179
PP 3/4 A (defect), TOL = 10−10 8707 34790 3.053 5.325
PP 5/6 A (defect), TOL = 10−10 1300 5154 1.196 2.009

Table 5.3: Comparison of the efficiency of Emb 4/3 AK p, PP 3/4 A, and PP 5/6 A for (4.1),
using the step-size selection algorithm (3.4). The tolerances were 10−5 (top), 10−8 (middle) and
10−10 (bottom), respectively.

and 4, with a significantly reduced number of steps, and a clear advantage for the
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Method 10000 steps 10000 steps with estimator
Emb 4/3 AK p 17.70 32.47

PP 3/4 A 11.17 23.39
PP 5/6 A 19.67 45.64

Table 5.4: Comparison of the costs of Emb 4/3 AK p, PP 3/4 A, and PP 5/6 A for (4.2).

higher-order method for stricter tolerances. The alternative step-size choice (3.4)
provides an advantage for this example only in half of the runs with the stricter
tolerances, see Table 5.6.

Method # steps adaptive # steps equidist time adaptive time equidist
Emb 4/3 AK p, TOL = 10−5 1034 5001 2.275 6.059

PP 3/4 A, TOL = 10−5 1623 5087 2.601 4.863
PP 5/6 A, TOL = 10−5 514 5001 3.225 14.765

Emb 4/3 AK p, TOL = 10−8 5772 17733 16.955 26.519
PP 3/4 A, TOL = 10−8 9200 28822 13.797 22.514
PP 5/6 A, TOL = 10−8 1913 5909 11.671 17.438

Emb 4/3 AK p, TOL = 10−10 18246 56065 42.758 65.400
PP 3/4 A, TOL = 10−10 29100 91163 44.496 66.985
PP 5/6 A, TOL = 10−10 4358 13372 18.216 26.749

Table 5.5: Comparison of the efficiency of Emb 4/3 AK p, PP 3/4 A, and PP 5/6 A for (4.2)
using the step-size selection algorithm (3.3). The tolerances were 10−5 (top), 10−8 (middle) and
10−10 (bottom), respectively.

Method # steps adaptive # steps equidist time adaptive time equidist
Emb 4/3 AK p, TOL = 10−5 1178 5001 2.471 5.837

PP 3/4 A, TOL = 10−5 1806 5659 2.882 4.209
PP 5/6 A, TOL = 10−5 582 5001 2.575 9.869

Emb 4/3 AK p, TOL = 10−8 6583 20227 13.112 22.955
PP 3/4 A, TOL = 10−8 10222 32026 17.924 26.983
PP 5/6 A, TOL = 10−8 2154 6643 10.185 14.228

Emb 4/3 AK p, TOL = 10−10 20813 63956 41.417 74.800
PP 3/4 A, TOL = 10−10 32333 101293 50.280 73.950
PP 5/6 A, TOL = 10−10 4856 14895 22.302 29.787

Table 5.6: Comparison of the efficiency of Emb 4/3 AK p, PP 3/4 A, and PP 5/6 A for (4.2),
using the step selection algorithm (3.4). The tolerances were 10−5 (top), 10−8 (middle), and 10−10

(bottom), respectively.

Gross–Pitaevskii equation with periodic potential (4.3). The solution of the prob-
lem (4.3) is challenging for a numerical integrator due to the nonsmooth spatial

17



Figure 5.2: Squared modulus of the initial state and solution at t = 30 of (4.3). The inset displays
the potential V (x) (in black) whose amplitude is approximately one tenth of the mean particle
energy, as well as a zoom of the non-smooth wavefunction at t = 30 (in blue).

solution profile. Wave chaos as measured by exponential divergence of two neigh-
boring wave functions demonstrated for this system [35] provides a benchmark for
speed and accuracy of the propagation algorithm. The non-smooth solution profile
is illustrated in Figure 5.2 to give an indication of the numerical challenge. For
this plot, we have chosen a Fourier spectral space discretization with 8196 basis
functions on the interval [−800,800] and a sixth-order splitting method.

For the comparisons in Tables 5.8 and 5.9, we use an underlying space
discretization with N = 16384 Fourier modes in one spatial dimension on
[−800,800]. Also for the Gross–Pitaevskii equation under a periodic potential
(4.3), each splitting step is between two and three times more expensive when
used in conjunction with an error estimator, see Table 5.7. Since this additional
cost is not compensated for by a large variation in the time-steps, see Figure 5.3,
the adaptive strategies are invariantly more expensive than uniform grids for this
model. If adaptive time-stepping is used for reasons of reliability, it can be ob-
served from Tables 5.8 and 5.9 that the defect-based error estimator is competitive
with a palindromic pair, and higher-order methods are more efficient for strict
tolerances. Most importantly, we observe that the step selection strategy (3.4)
yields a more efficient method in the majority of tests for this example, which can
most likely be attributed to the unsmooth solution dynamics. This contrasts the
ambivalent picture observed in the other test problems.
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Method 10000 steps 10000 steps with estimator
Emb 4/3 AK p 14.095 24.383

PP 3/4 A 9.938 27.758
PP 5/6 A 26.123 91.258

Emb 4/3 AK p (defect) 15.099 34.712
PP 3/4 A (defect) 9.810 22.504
PP 5/6 A (defect) 36.032 85.023

Table 5.7: Comparison of the costs of Emb 4/3 AK p, PP 3/4 A, and PP 5/6 A for (4.3).

Method # steps adaptive # steps equidist time adaptive time equidist
Emb 4/3 AK p, TOL = 10−5 2233 2936 10.237 7.609

PP 3/4 A, TOL = 10−5 3889 4204 14.029 7.299
PP 5/6 A, TOL = 10−5 4368 4768 40.530 21.756

Emb 4/3 AK p (defect), TOL = 10−5 1984 2284 11.632 5.970
PP 3/4 A (defect), TOL = 10−5 3897 4207 15.152 7.306
PP 5/6 A (defect), TOL = 10−5 4363 4903 43.352 22.546

Emb 4/3 AK p, TOL = 10−8 10598 11502 43.464 26.826
PP 3/4 A, TOL = 10−8 21925 23743 67.694 36.652
PP 5/6 A, TOL = 10−8 4282 4974 38.602 21.775

Emb 4/3 AK p (defect), TOL = 10−8 10356 11220 53.308 25.901
PP 3/4 A (defect), TOL = 10−8 21925 23745 70.223 23.364
PP 5/6 A (defect), TOL = 10−8 4365 5112 43.612 23.705

Emb 4/3 AK p, TOL = 10−10 33518 36434 108.992 71.035
PP 3/4 A, TOL = 10−10 69339 75092 188.785 113.936
PP 5/6 A, TOL = 10−10 9326 10907 80.606 40.795

Emb 4/3 AK p (defect), TOL = 10−10 32656 35511 115.140 77.685
PP 3/4 A (defect), TOL = 10−10 69339 75093 181.419 94.820
PP 5/6 A (defect), TOL = 10−10 9367 10958 67.552 29.917

Table 5.8: Comparison of the efficiency of Emb 4/3 AK p, PP 3/4 A, and PP 5/6 A for (4.3)
using the step-size selection algorithm (3.3). The tolerances were 10−5 (top), 10−8 (middle), and
10−10 (bottom), respectively.

Quantum control (4.4). When comparing our splitting methods when applied to
(4.4), we observe a similar picture as for the other problems; the computational
effort per time-step is the least for the palindromic pair PP 3/4 A and highest
for PP 5/6 A, with Emb 4/3 AK p in between. In each case the error estimator
roughly doubles the effort, see Table 5.10. In terms of efficiency, the higher-order
method excels also for this problem, but adaptive step-size selection does not pro-
vide an advantage. Obviously, the variation in the solution is so fast and local
that adaptive time-stepping cannot be exploited to increase the efficiency because
the overall variation in the magnitude of step-sizes is moderate, see Figures 5.4
and in particular 5.5. Tables 5.11 and 5.12 give the computation times for simula-
tions with the choices of the semiclassical parameter ε = 2−8 and ε = 10−5. The
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Figure 5.3: Step-sizes generated by an adaptive procedure based on PP 5/6 A with tolerance 10−8

for (4.3).

Method # steps adaptive # steps equidist time adaptive time equidist
Emb 4/3 AK p, TOL = 10−5 2509 3796 10.895 9.196

PP 3/4 A, TOL = 10−5 4323 4675 14.983 7.814
PP 5/6 A, TOL = 10−5 4208 4662 37.393 20.366

Emb 4/3 AK p (defect), TOL = 10−5 2170 2362 12.039 5.886
PP 3/4 A (defect), TOL = 10−5 4323 4676 16.250 7.806
PP 5/6 A (defect), TOL = 10−5 2651 3272 26.262 14.704

Emb 4/3 AK p, TOL = 10−8 12090 13100 48.395 30.010
PP 3/4 A, TOL = 10−8 24360 26382 77.424 40.832
PP 5/6 A, TOL = 10−8 4768 5547 42.373 19.359

Emb 4/3 AK p (defect), TOL = 10−8 11499 12436 37.963 23.752
PP 3/4 A (defect), TOL = 10−8 24361 26383 63.305 26.146
PP 5/6 A (defect), TOL = 10−8 4845 5674 31.079 16.623

Emb 4/3 AK p, TOL = 10−10 38235 41474 95.876 57.318
PP 3/4 A, TOL = 10−10 77042 83436 192.838 81.267
PP 5/6 A, TOL = 10−10 10369 12132 56.940 32.112

Emb 4/3 AK p (defect), TOL = 10−10 36281 39352 114.484 63.763
PP 3/4 A (defect), TOL = 10−10 77042 83437 192.684 97.340
PP 5/6 A (defect), TOL = 10−10 10404 12172 94.398 52.434

Table 5.9: Comparison of the efficiency of Emb 4/3 AK p, PP 3/4 A, and PP 5/6 A for (4.3),
using the step selection algorithm (3.4). The tolerances were 10−5 (top), 10−8 (middle) and 10−10

(bottom), respectively.
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high-order method PP 5/6 A is the most efficient.

Method 10000 steps 10000 steps with estimator
Emb 4/3 AK p 43.955 76.494

PP 3/4 A 30.236 60.637
PP 5/6 A 80.363 161.206

Emb 4/3 AK p (defect) 44.012 93.266
PP 3/4 A (defect) 30.326 65.534
PP 5/6 A (defect) 80.574 166.907

Table 5.10: Comparison of the costs of Emb 4/3 AK p, PP 3/4 A, and PP 5/6 A for (4.4).

Method # steps adaptive # steps equidist time adaptive time equidist
Emb 4/3 AK p, TOL = 10−5 117 139 0.905 0.608

PP 3/4 A, TOL = 10−5 236 279 1.428 0.832
PP 5/6 A, TOL = 10−5 80 90 1.292 0.720

Emb 4/3 AK p (defect), TOL = 10−5 118 136 1.108 0.596
PP 3/4 A (defect), TOL = 10−5 237 279 1.546 0.831
PP 5/6 A (defect), TOL = 10−5 81 90 1.352 0.722

Emb 4/3 AK p, TOL = 10−8 654 774 4.898 3.296
PP 3/4 A, TOL = 10−8 1335 1570 7.796 4.525
PP 5/6 A, TOL = 10−8 278 318 4.450 2.513

Emb 4/3 AK p (defect), TOL = 10−8 640 753 5.861 3.214
PP 3/4 A (defect), TOL = 10−8 1335 1570 8.430 4.527
PP 5/6 A (defect), TOL = 10−8 280 323 4.626 2.550

Emb 4/3 AK p, TOL = 10−10 2068 2446 15.059 10.163
PP 3/4 A, TOL = 10−10 4222 4963 23.945 13.894
PP 5/6 A, TOL = 10−10 636 755 9.970 5.857

Emb 4/3 AK p (defect), TOL = 10−10 2016 2382 17.929 9.906
PP 3/4 A (defect), TOL = 10−10 4222 4963 25.954 13.887
PP 5/6 A (defect), TOL = 10−10 639 759 10.363 5.888

Table 5.11: Comparison of the efficiency of Emb 4/3 AK p, PP 3/4 A, and PP 5/6 A for (4.4)
with ε = 2−8 using the step-size selection algorithm (3.3). The tolerances were 10−5 (top), 10−8

(middle) and 10−10 (bottom), respectively.

5.2. Splitting into three operators — the rotational GPE (4.5)
In this section, we do not only compare the effectiveness of adaptive step-

size selection as compared to uniform meshes, but also the two approaches put
forward in [51] and [53], respectively. That is to say, on the one hand we use a
spectral discretization by Laguerre–Fourier basis functions and splitting into two
operators [51], on the other hand we use a dimensional splitting into three oper-
ators [53] in conjunction with Fourier basis functions in both spatial directions.
The advantage of being able to use FFT transformations in the latter case by far
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Figure 5.4: Solution (top) and step-sizes (bottom) generated for (4.4) with ε = 2−8 for PP 5/6 A

and tolerance 10−10.

compensates for the increase in the number of compositions required for a higher-
order ABC-splitting. It should be noted, however, that in this setting, artificial
periodic boundary conditions have to be imposed in contrast to the asymptotically
correct boundary treatment in the approach based on the generalized Laguerre
functions. Both space discretizations use 250 basis functions in each of the two
spatial directions.

The computations for the rotational GPE (4.5) were all performed on the Vi-
enna Scientific cluster (VSC2). This consists of 1314 nodes, each with 2 proces-
sors (AMD Opteron 6132 HE, 2.2 GHz, 8 cores), that are interconnected via QDR
InfiniBand. For our computations, one node (16 cores) was used.

From Table 5.13 we observe that use of the error estimator roughly doubles
the computational effort in Emb 4/3 AK p, PP 3/4 A, and PP 5/6 A in both
their original and defect-based versions, with significantly more effort for the
highest-order method. The splitting into three operators PP 3/4 A 3 is signifi-
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Method # steps adaptive # steps equidist time adaptive time equidist
Emb 4/3 AK p, TOL = 10−5 266 408 2.038 1.685

PP 3/4 A, TOL = 10−5 454 715 2.906 1.998
PP 5/6 A, TOL = 10−5 347 544 5.628 4.048

Emb 4/3 AK p (defect), TOL = 10−5 493 670 5.067 2.758
PP 3/4 A (defect), TOL = 10−5 695 1014 4.967 2.826
PP 5/6 A (defect), TOL = 10−5 591 801 9.886 5.954

Emb 4/3 AK p, TOL = 10−8 3773 4909 26.776 19.825
PP 3/4 A, TOL = 10−8 6792 9145 37.619 25.033
PP 5/6 A, TOL = 10−8 2848 3660 42.256 26.909

Emb 4/3 AK p (defect), TOL = 10−8 3869 4845 34.049 19.576
PP 3/4 A (defect), TOL = 10−8 6806 9154 41.075 25.100
PP 5/6 A (defect), TOL = 10−8 3041 3764 46.953 27.618

Emb 4/3 AK p, TOL = 10−10 10245 12986 71.741 52.214
PP 3/4 A, TOL = 10−10 22123 29419 121.610 80.271
PP 5/6 A, TOL = 10−10 6942 8489 101.739 61.931

Emb 4/3 AK p (defect), TOL = 10−10 9285 11614 80.047 46.714
PP 3/4 A (defect), TOL = 10−10 22126 29424 132.412 80.371
PP 5/6 A (defect), TOL = 10−10 6986 8519 106.526 62.276

Table 5.12: Comparison of the efficiency of Emb 4/3 AK p, PP 3/4 A, and PP 5/6 A for (4.4)
with ε = 10−5 using the step-size selection algorithm (3.3). The tolerances were 10−5 (top), 10−8

(middle) and 10−10 (bottom), respectively.

cantly cheaper to perform, and moreover the additional cost for the error estima-
tor is lower here. The palindromic and the defect-based error estimators perform
comparably.

Adaptive step-size choice yields an advantage in about half the cases, signif-
icantly so for two-operator splitting with the strictest tolerance, see Table 5.14.
For the highest-order method PP 5/6 A, it was even impossible to finish the com-
putation for the strictest tolerance in the time allotted on VSC. It is of greatest
significance to observe that the three-operator splitting shows a tremendous com-
putational advantage, which has to be contrasted however with the fact that in
this case, artificial unphysical boundary conditions are imposed in contrast to the
asymptotic boundary conditions in the Fourier–Laguerre approach.

The reason for the ambivalent picture obtained from the assessment of the
merits of adaptive time-stepping for this example becomes clear if we look at the
obtained step-sizes. The variation is rather moderate throughout the integration, it
varies with some periodicity associated with the solution behavior over one or two
orders of magnitude. Figure 5.6 shows the step-sizes for four different schemes,
one embedded pair of methods and two palindromic pairs of orders 4 and 6, and a
palindromic splitting into three operators. While the former generate comparable
variations in the time-steps (of different sizes commensurate with the methods’
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Figure 5.5: Solution (top) and step-sizes (bottom) generated for (4.4) with ε = 10−5 for PP 5/6

A and tolerance 10−10.

Method 1000 steps 1000 steps with estimator
Emb 4/3 AK p 764.991 1411.657

PP 3/4 A 623.102 1201.231
PP 5/6 A 1619.335 3224.533

Emb 4/3 AK p (defect) 837.905 2237.602
PP 3/4 A (defect) 604.044 1369.487
PP 5/6 A (defect) 1591.078 3414.450

PP 3/4 A 3 81.790 125.933
PP 3/4 A 3 (defect) 78.017 130.345

Table 5.13: Comparison of the costs of Emb 4/3 AK p, PP 3/4 A PP 5/6 A, and PP 3/4 A 3

for (4.5).

accuracy), the latter displays quite different dynamics. This is to be attributed
to the fact, that in the ABC-splitting, different operators are propagated which
implies a quite different error behavior. This also accounts for the fact that the
step-size variations are smaller.
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Figure 5.6: Step-sizes generated for (4.5) for the tolerance 10−8 for the methods Emb 4/3 AK p

(top left), PP 3/4 A (top right), PP 5/6 A (bottom left), and PP 3/4 A 3 (bottom right).
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Method # steps adaptive # steps equidist time adaptive time equidist
Emb 4/3 AK p, TOL = 10−5 257 593 331.750 453.639

PP 3/4 A, TOL = 10−5 572 1199 698.655 747.099
PP 5/6 A, TOL = 10−5 378 487 1294.096 788.616

Emb 4/3 AK p (defect), TOL = 10−5 292 656 692.364 549.665
PP 3/4 A (defect), TOL = 10−5 516 1160 725.644 700.69
PP 5/6 A (defect), TOL = 10−5 233 515 870.543 819.405

PP 3/4 A 3, TOL = 10−5 1561 2379 242.647 194.578
PP 3/4 A 3 (defect), TOL = 10−5 1668 2601 216.260 202.922

Emb 4/3 AK p, TOL = 10−8 1712 22151 2375.509 16945.315
PP 3/4 A, TOL = 10−8 4844 124342 5983.282 77477.748
PP 5/6 A, TOL = 10−8 2907 115357 9719.208 186801.627

Emb 4/3 AK p (defect), TOL = 10−8 1455 4950 3255.689 4147.629
PP 3/4 A (defect), TOL = 10−8 2940 6911 4201.668 4174.548
PP 5/6 A (defect), TOL = 10−8 870 7023 2970.675 11174.140

PP 3/4 A 3, TOL = 10−8 7556 11701 1013.203 957.024
PP 3/4 A 3 (defect), TOL = 10−8 7832 12007 1030.912 936.750

Emb 4/3 AK p, TOL = 10−10 50425 2211674 71295.689 1691910.704
PP 3/4 A, TOL = 10−10 275133 12434140 327537.048 7747737.502
PP 5/6 A, TOL = 10−10 −− −− −− −−

Emb 4/3 AK p (defect), TOL = 10−10 5757 48767 12893.411 40862.113
PP 3/4 A (defect), TOL = 10−10 10035 55720 14202.577 33657.331
PP 5/6 A (defect), TOL = 10−10 5424 70839 18763.142 112710.374

PP 3/4 A 3, TOL = 10−10 23510 36672 3136.493 2999.402
PP 3/4 A 3 (defect), TOL = 10−10 23659 36795 3145.173 2870.635

Table 5.14: Comparison of the efficiency of Emb 4/3 AK p, PP 3/4 A, PP 5/6 A, and PP 3/4

A 3 for (4.5). The tolerances were 10−5 (top), 10−8 (middle) and 10−10 (bottom), respectively.

6. The Klein–Gordon equation

To conclude this study, we investigate hyperbolic nonlinear wave equations,
since their solution is particularly sensitive to an appropriate choice of the time-
steps which are required to satisfy a CFL (Courant–Friedrichs–Levi) condition
(for hyperbolic problems, the time-step is commonly limited in terms of the spa-
tial discretization parameter to ensure stability). We consider the Klein–Gordon
equation endowed with periodic boundary conditions on the rectangular domain
[−32π,32π]2,

∂ttu(x,y, t) = ∆u(x,y, t)−u(x,y, t)+u3(x,y, t), (6.1a)
u(x,y,0) = u0(x,y), ut(x,y,0) = v0(x,y). (6.1b)

If we write this as a first order system

∂ tu(x,y, t) = v(x,y, t), (6.1c)
∂ tv(x,y, t) = ∆u(x,y, t)−u(x,y, t)+u3(x,y, t), (6.1d)
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we can solve the problem by splitting into the vector fields

A :=
(

v
0

)
, B :=

(
0

∆u(x,y, t)−u(x,y, t)+u3(x,y, t)

)
.

It turns out that for this partitioned system, splitting schemes are equivalent to
partitioned Runge–Kutta methods, e.g. Strang splitting corresponds to the (sym-
plectic) Störmer–Verlet method,

u j+1/2 = u j +h/2v j, (6.2a)

v j+1 = v j +h(uxx, j+1/2−u j+1/2 +u3
j+1/2), (6.2b)

u j+1 = u j+1/2 +h/2v j+1, (6.2c)

where uxx, j+1/2 is an approximation of the second spatial derivative computed
from the entries of u j+1/2.

Applying this second order scheme, we observe the expected empirical order
three for the local error: We choose the domain (x,y) ∈ [−32π,32π]2 and im-
pose periodic boundary conditions, as the initial condition we prescribe u0(x,y) =
v0(x,y) = exp(−x2− y2). The space discretization is based on a Fourier pseu-
dospectral method on a grid with 512× 512 points. In Table 6.1, ` err gives the
error with associated empirical order p err, as computed with respect to a refer-
ence solution with timestep 1.22 ·10−4, and δ est and p est refer to the deviation
of the error estimator as compared to the true error (approximated via the refer-
ence solution). As expected, the error estimator is asymptotically correct, and the
order three for the local error implies global order two, illustrated by g err and
p. Note that this check is performed here because for hyperbolic problems, no
convergence theory of splitting methods is available.

h ` err δ est p err p est g err p
5.000 E−01 0.309 E−03 0.242 E−03 0.219E-02
2.500 E−01 0.280 E−04 0.163 E−04 3.46 3.89 0.226E-03 3.28
1.250 E−01 0.277 E−05 0.105 E−05 3.34 3.95 0.514E-04 2.13
6.250 E−02 0.299 E−06 0.667 E−07 3.21 3.98 0.126E-04 2.02
3.125 E−02 0.345 E−07 0.419 E−08 3.12 3.99 0.315E-05 2.01
1.563 E−02 0.414 E−08 0.261 E−09 3.06 4.01 0.787E-06 2.00
7.813 E−03 0.504 E−09 0.155 E−10 3.04 4.07 0.197E-06 2.00

Table 6.1: Empirical convergence orders of the local and the global errors for Strang splitting
applied to the Klein–Gordon equation (6.1).

In the same setting, a symmetric fourth order composition method based on
Strang splitting is applied to (6.1). In Table 6.2 we again observe the classical
orders.
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h ` err δ est p err p est g err p
5.000 E−01 0.155E-02 0.149E-03 0.394E+00
2.500 E−01 0.177E-04 0.154E-05 6.45 6.59 0.307E-01 3.68
1.250 E−01 0.220E-06 0.249E-07 6.33 5.95 0.115E-04 11.38
6.250 E−02 0.293E-08 0.408E-09 6.23 5.93 0.691E-06 4.06
3.125 E−02 0.706E-10 0.671E-11 5.37 5.93 0.427E-07 4.02
1.563 E−02 0.254E-11 0.111E-11 4.80 2.59 0.266E-08 4.00
7.813 E−03 0.884E-13 0.569E-12 4.85 0.97 0.166E-09 4.00
3.906 E−03 0.291E-14 0.287E-12 4.92 0.99 0.104E-10 4.00

Table 6.2: Empirical convergence orders of the local and the global errors for fourth order compo-
sition applied to the Klein–Gordon equation (6.1).

6.1. Defect evaluation
For the underlying problem class and solution method, the defect-based error

estimate introduced in [30], see Section 3.2, can be implemented in a particularly
simple way:

When a nonlinear wave equation of the form

∂ttu = ∆u+ f (u) (6.3)

is rewritten as a system of first order as in (6.1), we obtain a partitioned system of
the form

∂tu(t) = G(v(t)),
∂tv(t) = F(u(t)),

(6.4)

where in our case G is the identity. This is solved by application of partitioned
Runge-Kutta schemes which applied to (6.4) are equivalent to splitting schemes
according to the splitting(

u̇(t)
v̇(t)

)
=

(
G(v(t))

0

)
+

(
0

F(u(t))

)
. (6.5)

In this special case, the defect-based local error estimator is particularly easy to
specify and to evaluate, as explained in the following. Before discussing the gen-
eral case, we give a detailed example to illustrate the argument.

Example: 2nd order partitioned Runge–Kutta scheme. Consider one step of
a second order partitioned scheme (corresponding to Strang splitting), where
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(u0,v0) 7→ (u(h),v(h)):

u1(h) = u0 +
h
2

G(v0), (6.6a)

v(h) = v0 +hF(u1(h)), (6.6b)

u(h) = u1(h)+
h
2

G(v(h)). (6.6c)

For evaluating the defect(
Du
Dv

)
=

(
u̇(h)−G(v(h))
v̇(h)−F(u(h))

)
(6.7)

of the numerical solution with respect to the given evolution equation (6.4), we
consider h as continuous variable and differentiate equations (6.6):

u̇1(h) =
1
2

G(v0), (6.8a)

v̇(h) = F(u1(h))+hF ′(u1(h)) · u̇1(h) (6.8b)

= F(u1(h))+hF ′(u1(h)) ·
1
2

G(v0), (6.8c)

u̇(h) = u̇1(h)+
1
2

G(v(h))+
h
2

G′(v(h)) · v̇(h). (6.8d)

Hence,

Du(h) = u̇(h)−G(v(h))

= u̇1(h)+
1
2

G(v(h))+
h
2

G′(v(h)) · v̇(h)−G(v(h))

=
1
2
(
G(v0)−G(v(h))

)
+

h
2

G′(v(h)) · v̇(h), (6.9a)

Dv(h) = v̇(h)−F(u(h)). (6.9b)
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This can be realized algorithmically as follows:

w1 =
1
2

G(v0),

w2 =
1
2

G(v(h)),

w3 = F(u1(h)),
w4 = F(u(h)),
w5 = F ′(u1(h)) ·w1,

w6 = w3 + t w5 (= V̇ (h)),
w7 = G′(v(h)) ·w6.

Then,

Du = w1−w2 +
h
2

w7,

Dv = w6−w4.

Taylor expansion immediately shows Du = O(h2), Dv = O(h2). Thus,

h
3

D =
h
3

(
Du
Dv

)
(6.10)

is an estimate for the local error which is O(h3); its deviation from the local error
is O(h4).

Next, we generalize this idea to higher-order splitting methods, which for con-
venience are constructed as (symmetric) compositions of Strang splitting sub-
steps [12]. The general idea is the same as in [30]: For computing the defect,
evaluations of the type F ′(u) ·w and G′(v) ·w are required. We suppress the ar-
gument t. Let a j, b j denote the coefficients of the scheme. Starting at u0, v0 we
have, for j = 1 . . .s :

u j = u j−1 +ha j G(v j−1) =: φ(h,u j−1,v j−1),

v j = v j−1 +hb j F(u j) =: ψ(h,u j,v j−1).
(6.11)

Then, u(h) = us, v(h) = vs.
For evaluating the defect (Du,Dv) of (u(h),v(h)) with respect to the given

evolution equation (6.4), we use a recursion for the evaluation of the derivatives
of the intermediate approximations: Starting at u̇0 = v̇0 = 0 we have for j = 1 . . .s :

u̇ j = u̇ j−1 +a j
(
G(v j−1)+hG′(v j−1) v̇ j−1

)
=: Φ(t, u̇ j−1,v j−1, v̇ j−1),

v̇ j = v̇ j−1 +b j
(
F(u j)+hF ′(u j) u̇ j

)
) =: Ψ(h,u j, u̇ j, v̇ j−1).

(6.12)
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With u = us,v = vs, u̇ = u̇s, v̇ = v̇s, this finally yields the defect

D =

(
Du
Dv

)
=

(
u̇−G(v)
v̇−F(u)

)
.

If the scheme has order p, the local error estimate is now given by

h
p+1

D , (6.13)

and its deviation from the exact local error is O(hp+2).

6.2. Adaptive time-stepping
To illustrate the robustness of adaptive time-stepping we consider the Strang

splitting (realized as above) applied to (6.1), with an underlying space discretiza-
tion of 512× 512 Fourier modes on [−32π,32π]2. If we apply adaptive time-
stepping relying on the defect-based error estimator (Section 3.2) to satisfy a tol-
erance of = 10−5, we obtain the time-steps displayed in Figure 6.1.

Figure 6.1: Adaptive time-stepping and local error for (6.1).

6.3. 1D illustrations
To illustrate the behavior of our adaptive time-stepping strategy further, we

consider two examples for wave equations in one spatial dimension where exact
solutions and their properties are known.
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Klein–Gordon equation. First, we consider (6.1) for x ∈ [−50,50], with an un-
derlying Fourier pseudospectral discretization at N = 4096 points. The solution is
computed by the Strang splitting according to (6.6).

The initial condition for (6.1) is chosen such as to yield the exact (soliton)
solution

u(x, t) =
√

2 sech
(

x− ct√
1− c2

)
, c = 0.5,

which is known to be orbitally unstable (implying solution blowup under small
perturbations, see [55]). Our adaptive time-stepping method correctly diagnoses
this behavior and consistently enforces ∆t → 0 as the solution approaches blow-
up. Figure 6.2 shows the generated time-steps when a tolerance of 10−9 is im-
posed.

Figure 6.2: Adaptive time-stepping for (6.1) for orbitally unstable 1D soliton.

Sine–Gordon equation. We solve the Sine–Gordon equation

∂ttu(x, t) = ∆u(x, t)−sin(u(x, t)), u(x,0) = u0(x), ut(x,0) = v0(x),(6.14a)

where the initial condition is chosen such that the exact solution is the so-called
breather solution

u(x, t) = 4arctan
(

tan(2)cos(γ cos(2)(t−0.1x))
cosh(γ sin(2)(x−0.1 t))

)
. (6.14b)

We integrate in time on [0,20] and observe that the time-steps are consistent with
the variation of the smoothness of the oscillating solution.
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Figure 6.3: Adaptive time-stepping for Strang applied to (6.14) with breather solution.

Figure 6.4: Adaptive time-stepping for [40, Emb 4/3 AK p] applied to (6.14) with breather solu-
tion.

Figure 6.3 shows the time-steps chosen for the Strang splitting (6.2) with an
underlying tolerance of 10−12, and likewise for the fourth-order method [40, Emb
4/3 AK p], see Figure 6.4.

To additionally illustrate the reliability of our error control, we also apply our
global error estimate from Section 3.5 in the linearized version (3.9) and monitor
the energy2 conservation for (6.14). We integrate for t ∈ [0,20] with the second
order Strang splitting and with the fourth order composition, respectively. If a
tolerance of 10−9 is prescribed for the second order method, the maximum of the

2The total energy for the Sine–Gordon equation is defined by the integral∫ 50
−50

( 1
2 (∂tu)2 + 1

2 (∂xu)2− cos(u)
)

dx.
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error in the two components is 1.95 ·10−5, while the deviation of the global error
estimator from the true error is 4.02 · 10−7. The energy difference between the
initial state and the approximation at t = 20 is 4.78 · 10−8. For the fourth order
composition with a tolerance 10−12, we observe a global error of 5.52 ·10−9 and
a deviation of 7.27 · 10−11. The energy difference here is 2.48 · 10−12. All these
observations of the numerical errors are consistent with a reliable error control
steering the solution process at the prescribed tolerance if we recall that the global
error results from the accumulation of local errors.

Stability. It is well known that explicit Runge–Kutta type methods are required to
satisfy a CFL condition (step-size limitation in relation to the spatial discretization
parameter, see [56]) for a stable integration of hyperbolic problems. This is also
observed for splitting methods, which is in particular clear in the cases where we
have shown above that these are equivalent. We see that if in our adaptive proce-
dure the tolerance is chosen as too large, the numerical solution may satisfy the
error tolerance, but violate the CFL condition. This leads to numerical instabil-
ity. While adaptive step-size choice correctly diagnoses this behavior and reduces
the time-step accordingly, this still leads to an undesirably inefficient computation
due to the large number of rejected time-steps. In Figure 6.5 we observe such a
behavior when the last computation for (6.14) (see Figure 6.4) is repeated with a
tolerance 10−6 instead of 10−9. Indeed, about 15% of the time-steps are rejected
and the time-steps oscillate, indicating the location of the stability threshold. Still,
the adaptive procedure achieves to compute a reliable solution with a global error
3.89 ·10−4 at T = 20.

Figure 6.5: Step selection near the regime of instability for (6.14).
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7. Conclusions

We have investigated adaptive time-stepping for splitting methods applied to
nonlinear Schrödinger equations representative for the challenges encountered in
problems arising in large-scale simulations of quantum dynamics. The problems
comprise the cubic Schrödinger equation with focussing nonlinearity with the
solution given by two crossing solitons, a two-component system, the Gross–
Pitaevskii equation with a highly oscillatory potential triggering wave chaos, a
problem representative for quantum control, and the rotational Gross–Pitaevskii
equation. We have employed various splitting schemes of different orders and es-
timators for the time-stepping error and have compared their efficiency. It turned
out that a significant advantage in computational efficiency is to be expected when
the solution shows a singular critical event where the solution becomes unsmooth
as in blowup or the crossing of solutions, whereas for rapidly varying solutions
only with the strictest tolerances adaptivity may show an advantage. Among
the different error estimators are pairs of methods with embedded coefficients,
palindromic pairs of schemes, and defect-based error estimators. In most cases,
higher-order methods perform favorably, where error estimators are most eco-
nomically constructed for methods with palindromic coefficients. Generally, the
biggest advantage of a time-adaptive strategy is revealed when no suitable initial
guess for the appropriate step-size is available. Moreover, we have demonstrated
for wave equations that adaptive step-size selection provides a tool for diagnosing
and avoiding instability for instance induced by a CFL condition.
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