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High order exactly divergence-free Hybrid Discontinuous
Galerkin Methods for unsteady incompressible flows

Christoph Lehrenfeld1∗ and Joachim Schöberl1

1 Institute for Analysis and Scientific Computing, TU Wien, Wiedner Hauptstrasse 8-10, 1040 Wien, Austria

SUMMARY

In this paper we present an efficient discretization method for the solution of the unsteady incompressible
Navier-Stokes equations based on a high order (Hybrid) Discontinuous Galerkin formulation. The crucial
component for the efficiency of the discretization method is the disctinction between stiff linear parts and
less stiff non-linear parts with respect to their temporal and spatial treatment.
Exploiting the flexibility of operator-splitting time integration schemes we combine two spatial
discretizations which are tailored for two simpler sub-problems: a corresponding hyperbolic transport
problem and an unsteady Stokes problem.
For the hyperbolic transport problem a spatial discretization with an Upwind Discontinuous Galerkin
method and an explicit treatment in the time integration scheme is rather natural and allows for an
efficient implementation. The treatment of the Stokes part involves the solution of linear systems. In
this case a discretization with Hybrid Discontinuous Galerkin methods is better suited. We consider such
a discretization for the Stokes part with two important features: H(div)-conforming finite elements to
garantuee exactly divergence-free velocity solutions and a projection operator which reduces the number
of globally coupled unknowns. We present the method, discuss implementational aspects and demonstrate
the performance on two and three dimensional benchmark problems. Copyright c© 0000 John Wiley & Sons,
Ltd.

Received . . .

KEY WORDS: Navier-Stokes equations, Hybrid Discontinuous Galerkin Methods, H(div)-conforming
Finite Elements, exactly divergence-free, Operator-Splitting, reduced stabilization

1. INTRODUCTION

1.1. Problem statement

We consider the numerical solution of the unsteady incompressible Navier Stokes equations in a
velocity-pressure formulation:{

∂
∂tu+ div(−ν∇u+ u⊗u+ pI) = f in Ω

divu = 0 in Ω
(1)

with boundary conditions u = uD on ΓD ⊂ ∂Ω and (ν∇u− pI) · n = 0 on Γout = ∂Ω \ ΓD. Here,
ν = const is the kinematic viscosity, u the velocity, p the pressure, and f is an external body force.
We consider a discretization to (1) with high order (Hybrid) Discontinuous Galerkin (DG) finite
element methods for complex geometries with underlying meshes consisting of possibly curved
tetrahedra, hexahedra, prisms and pyramids.

∗Correspondence to: Christoph Lehrenfeld, Institute for Analysis and Scientific Computing, TU Wien, Wiedner
Hauptstrasse 8-10, 1040 Wien, Austria. E-mail: christoph.lehrenfeld@gmail.com
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2 C. LEHRENFELD AND J. SCHÖBERL

1.2. Literature

Since its introduction in the paper of Reed and Hill [1], DG methods have been developed
and used for hyperbolic problems [2, 3, 4, 5, 6] and later extended to second-order elliptic
(and parabolic) problems [7, 8, 9]. DG methods are specifically popular for flow problems
[10, 11]. For incompressible flows different finite element methods have been discussed in the
literature [12, 13, 14]. Among these methods several DG formulations have been considered, e.g.
[15, 16, 17, 18, 19].

DG methods provide a flexibility which can be utilized for different purposes. In our case, the
motivation to consider this type of discretizations is twofold. First, relevant flow problems that
can be modeled with the incompressible Navier-Stokes equations are often convection dominated.
Using the Upwind mechanism DG methods offer a natural way to devise stable discretizations of
(dominating) convection. Secondly, abandoning H1-conforming finite element spaces, DG methods
allow to consider (only)H(div)-conforming finite elements (see [20]) for (Navier-)Stokes problems.
This is attractive as it facilitates the design of a discretization with exactly solenoidal solution which
in turn implies energy-stability of the discretization for the Navier-Stokes problem, cf. [18, 19, 21].

Compared to Continuous Galerkin (CG) methods the number of degrees of freedom of
Discontinuous Galerkin methods increases significantly. This drawdack is often outwayed by the
advantages of the method. However, when it comes to solving linear systems Discontinuous
Galerkin methods suffer most from drastically increased globally coupled degrees of freedom.
An approach to compensate for this is the concept of Hybridization where additional unknowns
on element interfaces are introduced. This increases the number of degrees of freedom, but
introduces two advantages. First, the global couplings are reduced and secondly, the structure of
the couplings allows to apply static condensation for the element unknowns. The concept has
originally been introduced in the context of mixed finite element methods, cf. [20]. In the last decade
Hybridization has also been applied to Discontinuous Galerkin method for a variety of problems, cf.
[22, 23, 24, 25, 26]. We also mention, that recently similar concepts are also known in the literature
under the name “Hybridized Weak Galerkin” methods [27] where a slightly different framework is
used to derive the methods. With the emphasis to treat general polyhedral meshes “Hybrid High-
Order” (HHO) methods [28] have recently been introduced where a combination of Hybrid (or
hybridized) methods and higher order spaces is considered.

Concerning HDG discretizations for incompressible flows, we also mention the papers [29, 25,
30]. Further, different approaches to implement exact incompressible finite element solutions to
the Stokes problem using Hybridization have been investigated in [31, 32, 33]. In [34] the Stokes-
Brinkman problem, the Stokes problem with an additional zero order term, has been discretized
using a hybridized H(div)-conforming finite element formulation.

An interesting and often praised aspect of Hybrid mixed finite element methods is the fact
that a post-processing step can be used to reconstruct interior unknowns of an increased higher
order accuracy for elliptic problems [20]. The same is also possible for HDG methods in mixed
formulation which is another advantage over conventional DG methods, see e.g. [24]. For elliptic
problems an accuracy of order k + 2 in the volume can be achieved if polynomials of order k
are used on the element interfaces. One main contribution in this paper is the introduction of a
projection operator which achieves the same effect. In [21] we already discussed this operator
which has recently also been addressed under the name “reduced stabilization” in [35, 36, 37, 38].
In these papers the construction of the corresponding operator is only possible in two dimensions
using special integration rules. We explain how the operator can be implemented in a more general
setting.

The efficiency and practicability of HDG methods is rarely addressed in the literature. Interesting
exception are [39, 40] where the computational cost of the method is compared to CG and DG
methods.

The nature of diffusive (viscous) and convective terms appearing in convection-diffusion-type
problems have a substantially different character. Discretizations of problems involving only one
of the two mechanisms would typically lead to different spatial and temporal discretizations. It is
therefore often desirable to consider operator-splitting time discretization schemes which allow for a

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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EXACTLY DIVERGENCE-FREE HDG METHODS FOR INCOMPRESSIBLE FLOWS 3

separate treatment of the different operators as in [41, 42, 43, 44, 45, 46]. In these papers the spatial
discretization for the stiff (diffusion/Stokes) and the non-stiff (convection) operators is typically the
same. We consider a different treatment of the operators with respect to their temporal and spatial
discretization.

1.3. The concept: Efficiency through operator splitting

A crucial ingredient in the considered discretization is the fact that the convection and the Stokes
problem are separated by means of an operator-splitting method. The operator-splitting method
is chosen such that only operator evaluations of the convection operator are required so that the
time integration scheme is explicit in terms of the convection operator. This is often affordable
as the time step restrictions following from the convection operator are the least restrictive ones
in the Navier-Stokes problem. Moreover, the convection operator is non-linear, s.t. the set up of
linear systems of equations and corresponding preconditioners or solvers would have to take place
every time step which renders implicit approaches for the convection very expensive. The Stokes
operator is dealt with implicitly, i.e. it appears in linear systems in every time step. Due to the
differential-algebraic structure of the Navier-Stokes equations this is necessary w.r.t. the pressure
and the incompressibility constraint. As completely explicit handling of the viscosity terms would
introduce severe time step restrictions it is also advisable to treat viscous forces implicit. Note that
the Stokes operator is time-independent such that the setup of linear systems and preconditioners or
solvers can be done once and re-used in every time step.

The spatial discretizations for the different operators are designed differently as the treatment
of the convection term can be optimized for operator evaluations while the discretization of the
Stokes operator has to provide an efficient handling of implicit solution steps, i.e. the solution
of corresponding linear systems. This different treatment reflects in the use of two different finite
element spaces which are used: An H(div)-conforming Hybrid DG space for the velocity-pressure-
pair for solving Stokes problems and a DG space for handling convection.

1.4. Main contributions and structure of this paper

In this paper we introduce a new discretization method for the Navier-Stokes equations. The
discretization is based on a decomposition of the problem into the (unsteady) Stokes problem and a
hyperbolic transport problem. The decomposition is exploited in the spatial as well as in temporal
discretization. The main contributions of this paper are:

1. Introduction of a new H(div)-conforming high order accurate HDG method with a projected
jumps formulation (also known as reduced stabilization or reduced-order HDG) for the
solution of Stokes-type problems.

2. Presentation of a combined spatial discretization for the Navier-Stokes equations based on a
standard Upwind DG formulation for the hyperbolic transport problem with the new HDG
method for Stokes-Brinkman problems.

3. Discussion of operator-splitting time integration schemes which restrict solutions of linear
systems to Stokes-Brinkman problems.

In section 2 we discuss the discretization of spatial operators. The discussion is divided into two
parts, the discretization of the Stokes-Brinkman problem, the problem which involves all relevant
spatial operators except for the convection and the discretization of the convection operator. For
the former part we consider an HDG discretization, for the latter part a standard DG discretization.
In section 3 operator-splitting time integration schemes are discussed which are tailored for such a
situation. Finally, in section 4 we give numerical examples which demonstrate the performance of
the method.

1.5. Preliminaries

Before describing the methods, we introduce some basic notation and assumptions: Ω is an open
bounded domain in Rd with a Lipschitz boundary Γ. It is decomposed into a shape regular partition

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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4 C. LEHRENFELD AND J. SCHÖBERL

Th of Ω consisting of elements T which are (curved) simplices, quadrilaterals, hexahedrals, prisms
or pyramids. For ease of presentation we assume that all elements are not curved and consider
only homogeneous Dirichlet boundary conditions. The element interfaces and element boundaries
coinciding with the domain boundary are called facets. The set of those facets F is denoted by Fh

and there holds
⋃

T∈Th ∂T =
⋃

F∈Fh
F .

In the sequel we distinguish functions with support only on facets indicated by a subscript F and
those with support also on the volume elements which is indicated by a subscript T . Compositions
of both types are used for the HDG discretization of the velocity which is denoted by u = (uT , uF ).

For vector-valued functions the superscripts t denotes the application of the tangential projection:
vt = v − (v ·n) · n ∈ Rd. The index k which describes the polynomial degree of the finite element
approximation at many places through out the paper is an arbitrary but fixed positive integer number.

We identify finite element functions u ∈ Xh with their representation in terms of coefficient
vectors u ∈ RNX , s.t. u =

∑NX

i=1 uiϕi for a corresponding basis {ϕi} of Xh and NX = dim(Xh).
A (generic) bilinear form Gh : Xh × Yh → R is identified with the matrix G ∈ RNY ×NX , s.t.
Gi,j = Gh(ϕX

j , ϕ
Y
i ).

2. DG/HDG SPATIAL DISCRETIZATION

In this section we introduce the spatial discretization for the Stokes operator, the convection operator
and transfer operations between both. First, we introduce the H(div)-conforming Hybrid DG
discretization of the Stokes-Brinkman problem, i.e. the stationary Navier-Stokes problem without
convection and an additional zero order term in section in section 2.1. This discretization is improved
significantly. Further on, a modification of the discretization using the idea of projected jumps (also
known as reduced stabilization or reduced-order HDG) is presented in section 2.2 including an
explanation of how the projection operator can be realized. For the convection part of the Navier-
Stokes problem we consider a DG discretization using standard approaches. This is discussed in
section 2.3. As the discretization spaces for the Stokes part and the convection part are different, we
present transfer operations between the spaces in section 2.4 which allow us to finally formulate the
semi-discrete problem in section 2.5.

2.1. H(div)-conforming HDG formulation of the Stokes-Brinkman problem

In this part we consider the discretization of the Stokes part of the Navier-Stokes problem. For
simplicity we restrict the discussion to homogeneous Dirichlet boundary conditions. We present the
method and elaborate on important properties. For an error analysis of the method we refer to [21].
The reaction term τ−1 corresponding to an inertia term stemming from an implicit time integration
scheme is further incorporated. The resulting problem is known as the (stationary) Stokes-Brinkman
problem: {

τ−1u+ div(−ν∇u+ pI) = f in Ω
divu = 0 in Ω

(2)

We first introduce the finite element spaces, followed by the definition of the bilinear forms
corresponding to the involved operators.

2.1.1. H(div)-conforming Finite Elements for Stokes. Following [18] a DG formulation for the
incompressible Navier Stokes equations which is locally conservative and energy-stable at the same
time has to provide discrete solutions which are exactly divergence-free. This can be achieved with
a suitable pair of finite element spaces. We consider the use of H(div)-conforming Finite Element
spaces for the velocity u. H(div)-conformity requires that every discrete function uh is in

H(div,Ω) = {u ∈ [L2(Ω)]d : div u ∈ L2(Ω)}

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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EXACTLY DIVERGENCE-FREE HDG METHODS FOR INCOMPRESSIBLE FLOWS 5

We use piecewise polynomials, so that on each element the functions are in H(div, T ). For global
conformity, continuity of the normal component is necessary, resulting in

Wh := {uT ∈
∏

T∈Th

[Pk(T )]d, [[uT ·n]]F = 0 ∀ F ∈ Fh} ⊂ H(div,Ω), NW := dim(Wh), (3)

with [[·]]F the usual jump operator and Pk the space of polynomials up to degree k. We refer to [20]
for details on the construction of H(div)-conforming Finite Elements.
The appropriate Finite Element space for the pressure is the space of piecewise polynomials which
are discontinuous and of one degree less:

Qh :=
∏

T∈Th

Pk−1(T ), NQ := dim(Qh). (4)

This velocity-pressure pair Wh/Qh fulfills

div(Wh) = Qh. (5)

The crucial point of this choice of the velocity-pressure pair is the property:
If a velocity uT ∈Wh is weakly incompressible, it is also strongly incompressible:∫

Ω

div(uT )q dx = 0 ∀qh ∈ Qh ⇔ div(uT ) = 0 in Ω. (6)

The benefit of (6) is twofold: First, it allows to show energy-stability for the incompressible Navier-
Stokes equations, cf. section 2.5. Secondly, error estimates for the velocity error can be derived
which are independent of the pressure field, we comment on this in remark 5 below.

As solutions of the incompressible Navier Stokes equations are [H1(Ω)]d × L2(Ω)-regular and
tangential continuity is not imposed as an essential condition on the finite element space the discrete
formulation has to incorporate the tangential continuity weakly. We do this with a corresponding
(Hybrid) DG formulation for the tangential components across element interfaces

Remark 1 (Reduced spaces)
Due to (6) solutions of the discretized (Navier)-Stokes problem will be exactly divergence-free
velocity fields. This a priori knowledge can be exploited. The basis for the space Wh can be
constructed in such a way such that we can discard certain higher order basis functions (with non-
zero divergence) that will have no contribution. A corresponding basis is introduced in [47] in the
context of a set of higher order basis functions which fulfill an exact sequence property. The resulting
space W red

h has div(W red
h ) = Qred

h := {p|T = const : T ∈ Th} such that also most of the degrees of
freedom of the pressure space can be discarded. The reduction of basis functions for Wh and Qh is
explained in more detail in [21, Chapter 2.2].

2.1.2. The HDG space for the velocity. To (weakly) enforce continuity we apply a discontinuous
Galerkin (DG) formulation such as the Interior Penalty method [48]. However, to avoid the full
coupling of degrees of freedom of neighboring elements, we introduce additional unknowns on
the skeleton, the facet unknowns, which represent an approximation of the tangential trace of the
solution. The DG formulation is then replaced with a corresponding HDG formulation, s.t. degrees
of freedom of neighboring elements couple only through the facet unknowns.
As normal continuity is already implemented in Wh we only need a DG enforcement of continuity
in the tangential direction and hence only introduce the facet unknown for the tangential direction
of the trace:

Fh := {uF ∈
∏

F∈Fh

[Pk(F )]d, uF · n = 0 }, NF := dim(Fh). (7)

Functions in Fh have normal component zero. For the discretization of the velocity field we use the
composite space

Uh := Wh × Fh, NU := dim(Uh). (8)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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6 C. LEHRENFELD AND J. SCHÖBERL

DG H(div)-conforming DG

H1-conforming (CG) HDG H(div)-conforming HDG

Figure 1. Tangential and normal continuity for different finite element methods

Remark 2 (The role of the facet space)
We note that the space Fh is only introduced to allow for a more efficient handling of linear
systems. In section 4.1 we consider a numerical example where a vector-valued Poisson problem
is considered for the HDG space Uh in comparison to other (H(div)-conforming) DG spaces to
illustrate the impact of Hybridization. In case that only explicit applications of discrete operators
are used, the introduction of the space Fh entails no advantages. In this paper, facet variables appear
only in the discretization of the viscous forces. Although the facet variable has no contribution in
the discretization of inertia and pressure forces or the incompressibilty constraint we define the
corresponding operations for u ∈ Uh instead of uT ∈Wh to simplify the presentation.

2.1.3. Viscous forces. For ease of presentation we consider a hybridized version of the Interior
Penalty method for the discretization of the viscous term. In remark 3 we comment on alternatives.
In the hybridized version of the Interior Penalty method, the usual jump across element interfaces of
the Interior Penalty method is replaced with jumps between element interior and facet unknown (in
tangential direction) [[ut]] = utT − uF from both sides of a facet. The bilinear form corresponding to
the HDG discretization of viscous forces is

Ah(u, v) :=
∑
T∈Th

∫
T

ν∇uT :∇vT dx−
∫
∂T

ν
∂uT
∂n

[[vt]] ds

−
∫
∂T

ν
∂vT
∂n

[[ut]] ds+

∫
∂T

ν
α

h
[[ut]][[vt]] ds, u=(uT ,uF ), v=(vT ,vF )∈Uh

(9)

In this bilinear form the four terms have different functions. While the first two terms ensure
consistency (in the sense of Galerkin orthogonality) the third and fourth term are tailored to
ensure symmetry (adjoint consistency) and stability, respectively. Due to continuity of the solution
([[·t]] = 0) the latter terms also preserve consistency. For a more detailed introduction we refer to
[21, section 2.3.1]. With respect to the discrete norm

|||u|||21 :=
∑
T∈Th

{
‖∇uT ‖2T +

1

h
‖[[ut]]‖2∂T + h

∥∥∥∥∂uT∂n
∥∥∥∥2

∂T

}

which is an appropriately modified version of the discrete norm typically used in the analysis of
Standard Interior Penalty methods, the bilinearform Ah is (for a sufficiently large α) consistent,
bounded and coercive.

The coupling through facet unknowns enforces the same kind of continuity as in the Interior
Penalty DG formulation while preserving the following structure in the sparsity pattern: element
unknowns are only coupled with unknowns associated with the same element or unknowns
associated with aligned facets.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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EXACTLY DIVERGENCE-FREE HDG METHODS FOR INCOMPRESSIBLE FLOWS 7

k 4 8 16 32

quadrilateral 0.305 0.313 0.315 0.315
triangle 0.167 0.190 0.201 0.205

Table I. LBB constant in dependence of k for a single element.

Remark 3 (Interior Penalty and alternatives)
A drawback of the (Hybrid) Interior Penalty method is the fact that the stabilization parameter α
depends on the shape regularity of the mesh. Often α is chosen on the safe side, but as was pointed
out in [49] the condition number of arising linear systems increases with α. In the same paper
a hybridized variant of the Bassi-Rebay stabilization method (cf. [4, 5, 50]) for a scalar Poisson
equation has been proposed, see also remark 11. Such a variant is used in the numerical examples,
but as it does not have any further consequences for the remainder of this work, we stick to the
well-known (Hybrid) Interior Penalty method for ease of presentation.

2.1.4. Mass bilinear form. The HDG mass matrix is defined as

MU
h (u, v) :=

∫
Ω

uT vT dx, u = (uT , uF ), v = (vT , vF ) ∈ Uh. (10)

Note that we defined the mass matrix for u ∈ Uh although uF has no contribution, cf. remark 2.

2.1.5. Pressure force and incompressibility constraint. For the pressure force and the
incompressibility constraint we define the bilinearform

Dh(u, p) :=
∑
T∈Th

−
∫
T

p divuT dx for u = (uT , uF ) ∈ Uh, p ∈ Qh (11)

for which the LBB-condition

sup
u∈Uh

Dh(u, p)

|||u|||1
≥ c

LBB
‖p‖L2 , ∀ p ∈ Qh (12)

holds true for a c
LBB

independent of the mesh size h, cf. [21, Proposition 2.3.5].

Remark 4 (Robustness in polynomial degree k)
In numerical experiments we observed that the LBB constant c

LBB
in (12) is also robust in k. To

this end we computed the LBB constant of one element with Dirichlet boundary conditions and the
condition

∫
Ω
p dx = 0 on the pressure. The results are shown in Table I for varying the polynomial

degree k. From the boundedness of the LBB constant on one element and the h-robustness in (12),
the robustness in h and k on the global spaces follows. This will is in the forthcoming master’s thesis
of Philip Lederer.

2.1.6. Discretization of the Brinkman-Stokes problem With the introduced discretizations of the
spatial operators the discrete Brinkman-Stokes problem can be written as:
Find u ∈ Uh and p ∈ Qh, s.t.{

τ−1Mh(u, v) +Ah(u, v) + Dh(v, p) = 〈f, v〉 ∀ v ∈ Uh,
Dh(u, q) = 0 ∀ q ∈ Qh.

(13)

Due to coercivity of Ah ( respectively τ−1Mh +Ah), the LBB-condition of Dh and consistency
and continuity of all bilinear forms Brezzi’s famous theorem (see [20]) can be applied to obtain
optimal order a priori error estimates.

Remark 5 (Pressure-independence of velocity error)
Classical error estimates for mixed problems result in error estimates which are formulated in the

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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8 C. LEHRENFELD AND J. SCHÖBERL

compound norm of the velocity and pressure space. This has the disadvantage that the discretization
error in the velocity depends on the approximation error in the pressure. As was pointed out in
[51], ideally this should not be the case. Due to the fact that discrete solutions to (13) are exactly
divergence-free an error estimate for the velocity field which does not involve the pressure can be
derived, cf. [21, Lemma 2.3.13].

2.2. Projected jumps: An enhancement of the HDG Stokes discretization

The proposed HDG formulation for viscous forces in section 2.1.3 can also be derived as a hybrid
mixed method with a modified flux. This is done in detail in [24] (see also [21, section 1.2.2] or [30]).
In that setting the unknowns for the primal variable (uT ) are approximated with the same polynomial
degree k as the facet unknowns (uF ). Afterwards, in a postprocessing step approximations for
the primal unknown, of one degree higher, k + 1, are reconstructed in an element-by-element
fashion. This approach ends up with a higher order approximation than the previously introduced
HDG method considering the use of the same polynomial degree k for the facet unknowns. This
sub-optimality can be overcome by means of a projection operator which leads to the projected
jumps formulation. We first introduce the method and explain how the method can be implemented
afterwards.

2.2.1. Projected jumps: The method. The idea of the projected jumps formulation is to reduce the
polynomial degree of the facet unknowns in Fh to k − 1,

Fh → Fh := {uF ∈
∏

F∈Fh

[Pk−1(F )]d, uF · n = 0, ∀ F ∈ Fh}, (14)

while keeping the polynomial degree k in Wh. In order to do this in a consistent fashion we have to
modify the bilinearform Ah. First, we introduce the L2 projection Π for a fixed facet F ∈ Fh:

Π : [Pk(F )]d → [Pk−1(F )]d,

∫
F

(Πf) v dx =

∫
F

f v dx ∀ v ∈ [Pk−1(F )]d (15)

Due to the fact that ∂uT

∂n ∈ P
k−1(F ) on affine linearly mapped elements, the test functions vT and

vF in the first integral on the element boundary in (9) can be replaced by their L2(F ) projections
ΠvT and ΠvF . If we additionally use Π[[ut]] instead of [[ut]] to symmetrize and stabilize the
formulation in (9) we end up with a modified version of the Hybrid Interior Penalty method:

Ar
h(u, v) :=

∑
T∈Th

∫
T

ν∇uT :∇vT dx−
∫
∂T

ν
∂uT
∂n

Π[[vt]] ds

−
∫
∂T

ν
∂vT
∂n

Π[[ut]] ds+

∫
∂T

ν
α

h
Π[[ut]]Π[[vt]] ds, u, v ∈Wh × Fh

(16)

Note that the first two boundary integrals are just reformulated while only the last integral is
really changed. This modification preserves the important properties of Ah: It is still consistent
and bounded. Further, a deeper look into the coercivity proof (see [21]) reveals that coercivity can
easily be shown in the modified (weaker) norm

|||u|||21,∗ :=
∑
T∈Th

{
‖∇uT ‖2T +

1

h
‖[[Πut]]‖2∂T + h

∥∥∥∥∂uT∂n
∥∥∥∥2

∂T

}
. (17)

Notice that, as we do not modify Wh, the normal component of uT ∈Wh is still a polynomial of
degree k.

The idea of applying such a reduced stabilization is also discussed and analyzed in [36, 37].
However, only for the two-dimensional case the realization of the projection Π is discussed (by
means of Gauss quadrature, cf. [36, section 3.4]). In the next section a simple way to implement this
projection operator is presented.
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EXACTLY DIVERGENCE-FREE HDG METHODS FOR INCOMPRESSIBLE FLOWS 9

Remark 6 (Interplay with operator-splitting)
If a Hybrid DG formulation for a problem involving diffusion (viscosity) and convection is applied,
such a reduction of the facet unknowns is only appropriate if diffusion is dominating. One premise
of the operator-splitting in this paper is that convection is not involved in implicit solution steps.
Hence, the facet variable will never be involved in the discretization of convection, s.t. even if the
physical problem is convection dominated, the projected jumps modification can be applied without
loss of accuracy.

2.2.2. Projected jumps: Realization. The following way to implement projected jumps needed for
Ar

h in (16) relies on an L2-orthogonal basis for the facet functions in Fh. To obtain an L2-orthogonal
basis, we take a local coordinate system on each facet (spanned by d− 1 aligned edges) and an L2-
orthogonal Dubiner basis (see [52]) for each vector component. We consider the three dimensional
case, and denote the vectors of the local coordinate system by e1 and e2. Translation to the two
dimensional case is then obvious.

On each facet F ∈ Fh, the space of (vector-valued) polynomials up to degree k, span(e1, e2) ·
Pk(F ), can be split into the orthogonal subspaces

Vk−1 := span{e1, e2} · Pk−1(F ) and V⊥k−1 := span{e1, e2} · [Pk(F ) ∩
(
Pk−1(F )

)⊥
]. (18)

On each facet F the facet unknown uF can thus be written as uF = ūF + λ with unique ūF ∈ Vk−1,
λ ∈ V⊥k−1. We now replace the highest order function λ with two copies λT and λT ′ , each of these
functions is associated with one of the two neighbouring elements T and T ′, the functions λT are
only defined element-local. λT can thus be eliminated after the computation of the element matrix
and finally, only uT ∈Wh and ūF ∈ Fh appear in the global system.
λT is only responsible for implicitly realising the projection operator. To see this we now

consider one facet F ∈ Fh and one of the neighboring elements T ∈ Th. We use the decomposition
corresponding to (18) for trial and test functions

uF = ūF + λT and vF = v̄F + µT , (19)

with ūF , v̄F ∈ Vk−1 and λT , µT ∈ V⊥k−1 where λT , µT are only supported on T . In (13) we choose
the test function v such that vT = v̄F = 0, µT ∈ V⊥k−1 on T and µT ′ = 0 on every other element T ′.
This yields∫

F

ν
∂uT
∂n

µT ds+

∫
F

ν
α

h
(utT − ūF − λT )µT ds =

∫
F

ν
α

h
(utT − λT )µT ds = 0, ∀ µT ∈ V⊥k−1.

(20)
Hence, there holds λT = (I −Π)utT and we have

[[ut]] = utT − ūF − λT = Π(utT )− ūF = Π(utT − ūF ) = Π[[ut]] (21)

We conclude that it is sufficient to consider the HDG bilinear form Ah as before, where the local
element matrices are computed according to Fh. For each element matrix the degrees of freedom
corresponding to V⊥k−1 are then eliminated forming a corresponding Schur complement. This yiels
a final stiffness matrix which is only set up with respect to space unknowns of Wh × Fh.

2.3. DG formulation for the convection

For the discretization of the convection part we consider a standard DG finite element space:

Vh := {u : u ∈ [Pk(T )]d ∀T ∈ Th}, NV := dim(Vh). (22)

We define the mass bilinear form

MV
h (w, z) :=

∫
Ω

wz dx, w, z ∈ Vh. (23)
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10 C. LEHRENFELD AND J. SCHÖBERL

Using an L2-orthogonal basis on each element renders the associated mass matrix MV : RNV →
RNV diagonal. A stable spatial discretization of (1) with respect to the convection part is achieved
using a Standard Upwind DG trilinearform. We assume that the convection velocity uT is exactly
divergence-free.

Ch(uT ;w, z) :=
∑
T

−
∫
T

w ⊗ uT :∇z dx+

∫
∂T

uT ·n ŵ z ds, uT ∈Wh, w, z ∈ Vh. (24)

where ŵ denotes the upwind value ŵ = limε↘0 w(x− εuT (x)). Standard Upwind DG formulations
are stable in the sense that with ∂Ωin := {x ∈ ∂Ω, uT (x) · n < 0} there holds

1

2

∫
∂Ωin

|uT · n| w2 ds+ Ch(uT ;w,w) ≥ 0, ∀ w ∈ Vh, u ∈ Uh, div(uT ) = 0. (25)

2.4. Transfer operations and embeddings

The discrete convection and Stokes operators have been defined on different spaces. In order to
combine both we introduce transfer operations between the (finite element) spaces to make both
discretizations compatible. We restrict ourselves to two types of transfer operations which are based
on embeddings:

I: With Wh ⊂ Vh we have a canonical embedding of Uh in Vh with the embedding operator
I : (uT , uF ) ∈ Uh → uT ∈ Vh. Note that the corresponding operation in terms of coefficient
vectors, denoted by I : RNU → RNV , is not an identity.

IT : The embedding operator I implies the canonical embedding I ′ : V ′h → U ′h, which
maps functionals I ′ : f ∈ V ′h → [(uT , uF ) ∈ Uh → f(uT )] ∈ U ′h. The corresponding matrix
representation is IT : RNV → RNU .

To realize the operator I we consider the equivalent L2 problem for u ∈ Uh.∫
Ω

(Iu) v dx =

∫
Ω

uT v dx ∀ v ∈ Vh. (26)

In terms of coefficient vectors this reads as

MV (Iu) = MU,V u, ∀ u ∈ RNU =⇒ I = (MV )−1MU,V (27)

with the mixed mass matrix

MU,V
i,j =

∫
Ω

ϕW
j ϕV

i dx, i = 1, . . . , NV , j = 1, . . . , NW and MU,V
i,j = 0, j > NW .

Note that MV is diagonal (for affine linear transformations) such that (MV )−1 can be evaluated
very efficiently. The overall cost of the transfer operator I is essentially that of one sparse matrix
multiplication.

Let CV : RNU ×RNV → RNV denote the discrete convection operator corresponding to the
trilinearform Ch in (25).

With the operator I we can formulate applications of the convection and the mass operations
CV (u),MV : RNV → RNV with respect to functions in the HDG space Uh and denote the
corresponding operators by CU (u),MU : RNU → RNU ,

CU (u) := ITCV (u)I, MU := ITMV I. (28)

Remark 7 (Restriction on time integration scheme)
Note that the restriction to these two transfer operations implies that we do not allow to apply any
part of the Stokes operator to a function in Vh and that no functional on Uh can be used in solution
steps involving the convection operator. This is a restriction on the time integration scheme.
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Remark 8 (Curved elements)
If curved elements are considered we no longer have Wh ⊂ Vh due to the Piola transform
usually applied to construct H(div)-conforming finite elements. In this case I : Uh → Vh is not
an embedding, but the L2 projection. Nevertheless, MV is block diagonal with blocks which are not
diagonal matrices only on curved elements. Hence, applications of (MV )−1 are still cheap.

2.5. The semidiscrete formulation

With the definitions of the bilinear forms in the previous sections we arrive at the following spatially
discrete DAE problem: Find u(t) ∈ Uh and p(t) ∈ Qh, such that M

U
h ( ∂

∂tu, v) +Ah(u, v) + Ch(uT ;u, v)+ Dh(v, p) = 〈f, v〉 ∀ v ∈ Uh, t ∈ [0, T ],
Dh(u, q) = 0 ∀ q ∈ Qh, t ∈ [0, T ],
Mh(u, v) =Mh(u0, v) ∀ v ∈ Uh, t = 0.

(29)

Here, we implicitly used the embedding I to define Ch(uT ; ·, ·) on Uh. Due to (25) we have the
stability of the kinetic energy:

d

dt
‖u‖L2 ≤

1

2
‖f(t)‖L2 (30)

In the next section we discuss operator splitting time integration methods to solve (29) efficiently.

3. OPERATOR-SPLITTING TIME INTEGRATION

In this section we are faced with the problem of solving the semi-discrete Navier-Stokes problem
with a proper time integration scheme. For ease of presentation we neglect external forces (f = 0) in
the following and consider the problem in terms of discrete operators corresponding to the bilinear
(trilinear) forms introduced in the previous section: Find u(t) ∈ RNU and p(t) ∈ RNQ , such that MU ∂u

∂t + Au + CU (u) u ∆tDp = f in [0, T ],
DTu = 0 in [0, T ],

u(t=0) = u0.
(31)

In the time integration scheme we want to explicitly exploit the properties of the spatial
discretization, i.e. the convection operator C should only be involved explicitly in terms of operator
evaluation. Due to the DAE-structure we require time integration schemes which are stiffly accurate.
Hence, the solution of a Stokes-Brinkman problem should conclude every time step so that the
incompressibility constraint is ensured. For operator splittings of this kind different approaches
exist. We briefly discuss three approaches. In section 3.1 we discuss additive decomposition
methods, like the famous class of IMplicit EXplicit (IMEX) schemes. Product decomposition
methods, sometimes also called exponential factor splittings, are discussed in section 3.2 in the
framework of operator-integration-factor splittings introduced in [45]. We discuss the advantages
and disadvantages of both approaches and motivate the consideration of a different approach. An
operator-splitting modification of the famous fractional step method, cf. [53], which eliminates the
most important disadvantages of the additive and multiplicative decomposition methods is then
introduced and discussed in section 3.3. We want to stress that the considered operator splitting
approaches are of convection-diffusion type and should not be confused with projection methods
like the Chorin splitting [54].

3.1. Additive decomposition using IMEX schemes

Additive decomposition methods distinguish spatial operators that are treated implicitly and those
that are treated explicitly. The decomposition is additive in the sense that every solution (sub-)step
involves both operators. This is used by IMplicit EXplicit (IMEX) schemes (see [41, 42, 43]). The
simplest of these schemes is the semi-implicit Euler method for which one time step of size ∆t
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12 C. LEHRENFELD AND J. SCHÖBERL

reads as: {
(MU + ∆tA)un+1+ ∆tDpn+1 = MUun −∆tCU (un)un

DTun+1 = 0
(32)

Convection only appears on the r.h.s. so that only operator evaluations occur for the convection
operator, while the remainder appears fully implicit. This scheme is obviously only first order
accurate and only conditionally stable. For higher order methods of this decomposition type (e.g.
using Multistep or partitioned Runge-Kutta schemes) we refer to [41, 42, 43].

The major drawback of this type of operator splitting methods is the fact that the time step size
of the explicit and the implicit part of the decomposition have to coincide. Thereby the stability
restriction caused by the explicit treatment of the convection part dictates not only the number of
explicit evaluations but also - which is typically more expensive - the number of solution steps for
the implicit part. The decomposition methods considered in the sections 3.2 and 3.3 overcome this
issue.

3.2. Product decomposition with operator-integration-factor splitting

The disadvantage of IMEX methods can be avoided with product decomposition methods, where
sequences of separated problems are solved successively. The separated problems then only involve
the Stokes or the convection operator at the same time. The major benefit of this is the fact, that the
numerical solution of the sub-problems (e.g. the size of the time steps) can be chosen completely
different. The derivation of the so called operator-integration-factor splitting approach has been
derived in [45]. We sketch the idea here. The DAE (31) can formally be rewritten as{

∂
∂t (Q

t→t∗u) +Qt→t∗M−1(Au + Dp) = 0 in [0, T ],
DTu = 0 in [0, T ],

(33)

for some arbitrary t∗ ∈ R with Qt→t∗ the propagation operator, specified later in section 3.2.2. Be
aware that M−1 is to be understood only formally for now. We are able to apply any suitable (i.e.
implicit and stiffly accurate) time integration method for (33). We do this for a first order method
here to explain the procedure and refer to the literature [45] for higher order variants.

3.2.1. Implicit Euler. We employ the implicit Euler method on (33) and arrive at{
1

∆t (Q
tn+1→t∗un+1 −Qtn→t∗un) +Qtn+1→t∗M−1(Aun+1 + Dpn+1) = 0,

DTun+1 = 0.
(34)

After setting t∗ = tn+1 and multiplication with M this simplifies to{
(M + ∆tA)un+1 + ∆tDpn+1) = MV,UQtn→tn+1

Iun,
DTun+1 = 0,

(35)

which is the solution of a Stokes-Brinkman problem as in (32), but with a different right hand side.

3.2.2. The propagation operator. The propagation operator Qt1→t2 is defined as Qt1→t2w = v(t2)
where v(s) solves

∂v

∂s
+ (MV )−1CV (s)v(s) = 0, ∀ s ∈ (t1, t2], v(t1) = w. (36)

Here CV (s) := CV (ú(s)) with ú(s) an extrapolation of divergence-free solutions of previous
time steps. Note, that the extrapolation of convection velocities renders the problem (36) linear
hyperbolic and ensures stability in the sense of (25). After replacingQ by a numerical time integrator
Q∆t for (36), the time integration method is completely specified. The order of accuracy of the
extrapolation ú and the time integrator Q∆t should coincide with the order of the time integration
method applied on (33).
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3.2.3. Properties of product decompositions. At this point the advantage of product decomposition
methods over IMEX schemes is evident: As the time integration of (36) is independent of the one
for (33) the (not necessarily) explicit time integrator can deal with stability restrictions (typically
using multiple time steps) without influencing the time step for (33). This separation of the two
problems also introduces the biggest disadvantage of product decomposition methods: an additional
consistency error. Even if the DAE (31) has a stable stationary solution, product decomposition
methods may not reach it. This is not the case for monolithic or additive decomposition approaches.
Nevertheless, this splitting error is controlled by the time discretization error.

Remark 9 ((Marchuk-)Yanenko splitting)
If the implicit Euler discretization as in (35) is combined with an Euler method for (36), the famous
Yanenko splitting method is recovered.

3.3. A modified fractional-step-θ-scheme

In this section we introduce an approach to circumvent severe CFL-restrictions and splitting errors
at the same time. We no longer ask for sub-problems that only involve the Stokes or the convection
operator (as in section 3.2), but ask for sub-problems which only involve one of both implicitly. The
method is based on [46] where the well-known fractional-step-θ-scheme, cf. [53, Chapter II, section
10], is modified. The resulting method is an additive decomposition method without the time step
restrictions of IMEX schemes.

We start with formally writing down an operator-splitting version of the fractional-step-θ-scheme.
The scheme is divided into three steps, the first and the last step treat the Stokes part implicitly
and the convection part explicitly as in (32) while the second step treats convection implicitly and
viscosity forces explicitly.

Step 1(tn0 → tn1) :

{
(M + θ∆tA)un1+ θ∆tDpn1 = Mun0 − θ∆tCun0

DTun1 = 0
(37a)

Step 2 (tn1 → tn2) : { (M + θ∗∆tC)un2 = Mun1 − θ∗∆t(Aun1 + Dpn1) (37b)

Step 3 (tn2 → tn3) :

{
(M + θ∆tA)un3+ θ∆tDpn3 = Mun2 − θ∆tCun2

DTun3 = 0
(37c)

The time stages are labeled by the superscripts n0, n1, n2, n3, respectively, where n0 denotes initial
data and n3 the final time stage. The time steps size for the first and the last step is θ∆t and θ∗∆t
in the middle step with θ∗ = 1− 2θ. Here θ = 1− 1/

√
2. We note that specifications for M and

C with respect to the considered spaces and the convection velocity for C are still missing at this
points. The scheme is second order accurate. In contrast to the unsplit fractional-step-θ-scheme the
stability analysis of this time integration scheme is an open problem. In our experience, however,
the stability restrictions are much less restrictive than those of a comparable IMEX schemes.

3.3.1. Sub-steps in different spaces. Initially, we stated that we want to avoid solving linear systems
involving convection, for efficiency reasons. This seems to be contradictory to what is formulated
in (37b). Nevertheless, as only convection is involved implicitly an efficient numerical solution is
still possible. We apply a simple iterative scheme which only involves explicit operator evaluations
of the convection to do so. We explain this in section 3.3.2. To do this efficiently, we want Step 2 to
be formulated in the space Vh while Step 1 and 3 are to be formulated in the space (Uh, Qh). This
poses problems the solution of which we discuss in this section.

In Step 1 and Step 3 the adjustments are obvious: Step 1 only depends on initial data in Uh. The
initial data for Step 3 is in Vh but appears only in terms of functionals (Mv and Cv) such that the
transfer operations are clear. Step 2 is more involved, cf. remark 7. Functionals in U ′h (such as Au)
are in general not functionals in V ′h. We use the first equation in (37a) to formally define a different
representation of the functionals required in Step 2:

θ∆t gn1 = −θ∆t(Aun1 + Dpn1) = M(un1 − un0) + θ∆tCun0 (38)
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14 C. LEHRENFELD AND J. SCHÖBERL

Now we replace M and C with operations suitable for a setting in Vh:

RNV 3 gn1 :=
1

θ∆t
MU,V (un1 − un0) + θ∆tCV (un0)Iun0 (39)

We arrive at the modified fractional-step-θ-scheme:

Step 1 :

{
(MU+ θ∆tA)un1+ θ∆tD pn1 = MUun0 − θ∆t ITCV(un0) I un0

DTun1 = 0
(40a)

Step 2 :
{

(MV+ θ∗∆tCV(tn2)vn2 = MU,Vun1 − θ∗∆tgn1 (40b)

Step 3 :

{
(MU+ θ∆tA)un3+ θ∆tD pn3 = MV,Uvn2− θ∆t ITCV(tn2)vn2

DTun3 = 0
(40c)

where we replaced the generic operators M, C with suitable ones. We recall the definition of
the extrapolated convection operator CV(tn2) := CV(ú(tn2)) the convection velocity of which is
(linearly) extrapolated from exactly divergence-free velocities.

3.3.2. Iterative solution of the implicit convection problem. In (40b) we need to solve a problem of
the form

v + τ∗(MV )−1CV v = g∗ (41)

for given τ∗, g∗ and constant convection CV . We do this by means of a pseudo time-stepping
method, i.e. we formulate (41) as the stationary solution to

∂

∂s
v(s) + v(s) + τ∗CV v(s) = g∗, s ∈ [0,∞). (42)

Note that a stationary solution exists as Id + τ∗CV only has eigenvalues λ, with Re(λ) > 1. This
stationary solution is approximated with a few explicit Euler time step with an artificial time step
size ∆s.

vi+1 = vi + ∆s(g∗ − vi + τ∗(MV )−1CV vi). (43)

This procedure can be interpreted as a Richardson iteration applied to (41). With a time step size
which is tailored for stability (as in the numerical solution to (36)) we iterate (43) until the initial
residual is reduced by a prescribed factor. To solve the convection step, Step 2, we only require
operator evaluations for the convection. The time step size ∆s in this iteration is decoupled from
the time step size ∆t used of the overall scheme.

4. NUMERICAL EXAMPLES

In this section we consider three different problems. In section 4.1 a vector-valued Poisson problem
is considered using the H(div)-conforming HDG space Uh. The impact of hybridization in the
context of linear systems is compared to other DG methods.

Within the DFG Priority Research Programm ’Flow Simulation on High Performance Computers’
a set of challenging benchmark problems had been defined. In the sections 4.2 and 4.3 we consider
two transiert problems from this set which are formulated in [55]. In section 4.2 a two-dimensional
benchmark problem is considered to demonstrate the accuracy of our method for a demanding test
case and to compare the discussed time integration methods. Finally, in section 4.3 we discuss a
three-dimensional, and hence computationally challenging, benchmark problem from this set. We
compare accuracy and run-time performance to the data of the study in [56].

The methods discussed in this paper have been implemented in the add-on package ngsflow
[57] for the high order finite element library NGSolve [58]. The computations in this section have
also been carried out with this software. Throughout this section we only consider direct solvers and
comment on linear solvers below, in remark 11.

For the computations of the benchmark problem in sections 4.2 and 4.3 we used the reduced
H(div)-conforming space W red

h , cf. remark 1 and the projected jumps modification, cf. section 2.2.
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4.1. Linear systems - A comparison between DG and HDG methods

We consider the comparably simple vector-valued Poisson problem

−∆u = f in Ω, u = 0 on ∂Ω, (44)

discretized with four different methods. The three-dimensional domain Ω is the same as the one
in section 4.3 with an unstructured tetrahedral mesh consisting of 3487 elements. The problem
(44) leads to discretizations with symmetric positive definite matrices A. Only the lower triangular
part of the sparse matrix has to be stored and a sparse Cholesky factorization algorithm can be
used. In this comparison, we used the sparse direct solver PARDISO, cf. [59, 60]. We are only
concerned with the sparsity pattern of different methods before and after static condensation and do
not compare accuracy or conditioning of the discretizations. Moreover, for the sake of simplicity we
do not apply the reduction of the space Wh as discussed in remark 1. The following quantities
of interest for the linear systems arising from discretizations of (44) are displayed in Table II:

#dof[K] : number of unknowns (in thousands)
#cdof[K] : number of unknowns after static condensation (in thousands)
#nzeA[K] : number of non-zero entries in the system matrix A (lower triangle) (in thousands)
#nzeL[K] : number of non-zero entries in the Cholesky factor L (in thousands)

Four different methods are considered on Wh or Uh with varying polynomial degree between k = 1
and k = 6:

1. HDG: The HDG method proposed in section 2 without projected jumps.
2. PHDG: The HDG method with projected jumps, cf. section 2.2.
3. Std.DG.: A standard DG method using the space Wh where the basis is constructed such that

all degrees of freedom from one element couple with all degrees of freedom from adjacent
elements.

4. N.DG: A nodal DG method using the space Wh where basis functions are assumed to be
constructed such that degrees of freedom associated to one element couple only with degrees
of freedom from adjacent elements which have support on the shared facet. At the same time
we assume that basis functions are constructed such that the number of basis functions with
support on a facets is minimized, cf. [10]. In terms of the sparsity pattern this nodal DG
method represents the best case for a DG method without hybridization.

Std.DG N.DG HDG PHDG Std.DG N.DG HDG PHDG

k = 1 k = 2

#dof[K] 23 23 69 38 67 67 158 112
#cdof[K] 23 23 69 38 67 67 137 91
#nzeA[K] 732 676 2 037 637 5 073 4 177 8 103 3 628
#nzeL[K] 10 113 10 208 17 768 5 569 64 463 69 831 70 138 31 415

k = 3 k = 4

#dof[K] 146 146 298 237 271 271 500 423
#cdof[K] 146 146 229 168 271 261 343 267
#nzeA[K] 21 686 16 051 22 443 12 124 69 525 46 912 50 412 30 588
#nzeL[K] 261 977 260 416 194 524 104 496 814 168 731 253 435 129 264 183

k = 5 k = 6

#dof[K] 453 453 773 681 702 702 1 128 1 022
#cdof[K] 453 411 480 389 702 597 640 533
#nzeA[K] 184 035 101 473 98 696 64 816 424 764 200 813 175 321 121 944
#nzeL[K] 2 099 690 1 741 072 847 913 557 798 4 752 072 3 519 061 1 502 558 1 045 444

Table II. Comparison of different DG methods for the vector-valued reaction Poisson problem (44).

In Table II we observe that for small polynomial degree k the amount of additional unknowns
required for the HDG formulation is quite large as are the nonzero entries in the system matrix.
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Nevertheless except for k = 1, the number of nonzero entries in the Cholesky factor are comparable
(k = 2) to the Standard DG methods or less (k > 2). For high order, i.e. k ≥ 4 the HDG method
performs significantly better as it has less nonzero entries in A and L. The HDG space with the
projected jumps modification improves the situation dramatically. It essentially compensates the
overhead of the HDG method for small k. But even for k = 6 the effect is still significant. We note,
that the difference between the first three methods increases for increasing polynomial degree k
whereas the difference between the last two method, PHDG and HDG, decreases. In all cases the
HDG method with projected jumps outperforms all alternatives.

4.2. A two-dimensional benchmark problem

In this section we consider the benchmark problem denoted as “2D-2Z” in [55] where a laminar flow
around a circle-shaped obstacle is considered. The Reynolds number is moderately high (Re = 100)
and results in a periodic vortex street behind the obstacle. We briefly introduce the problem (for more
details we refer to [55]) and the numerical setup to investigate spatial and temporal discretization
errors. Finally, we discuss the obtained results.

4.2.1. Geometrical setup and boundary conditions. The domain is a rectangular channel without
an almost vertically centered circular obstacle, cf. Figure 2,

Ω := [0, 2.2]×[0, 0.41] \ {‖x− (0.2, 0.2)‖2 ≤ 0.05}. (45)

The boundary is decomposed into Γin := {x = 0}, the inflow boundary, Γout := {x = 2.2}, the
outflow boundary and ΓW := ∂Ω \ (Γin ∪ Γout), the wall boundary. On Γout we prescribe natural
boundary conditions (−ν∇u+ pI) · n = 0, on ΓW homogeneous Dirichlet boundary conditions for
the velocity and on Γin the inflow Dirichlet boundary conditions

u(0, y, t) = uD = (3/2 · ū) · 4 · y(dy − y)/d2
y · (1, 0, 0).

Here, ū = 1 and the viscosity is fixed to ν = 10−3 which results in a Reynolds number Re = 100.

4.2.2. Drag and Lift. The quantities of interest in this example are the (maximal and minimal) drag
and lift forces cD, cL that act on the disc. These are defined as

cD :=
1

ū2r

∫
Γ◦

(
ν
∂u

∂n
− pn

)
· ex ds, cL :=

1

ū2r

∫
Γ◦

(
ν
∂u

∂n
− pn

)
· ey ds.

Here ex, ey denote the unit vectors in x and y direction, r = 0.05 is the radius of the obstacle, ū is
the average inflow velocity (ū = 1) and Γ◦ denotes the surface of the obstacle.

4.2.3. Numerical setup. We use an unstructured triangular grid with an additional layer of
quadrilaterals around the disk which is anisotropically refined towards the disk once. In Figure 2
the geometry, the mesh and a typical solution is depicted.

0

2

Figure 2. Sketch of the mesh and the solution (color coding corresponding to velocity magnitude ‖u‖2) to
the problem considered in section 4.2 at a fixed time t (left) and zoom-in on the boundary layer mesh (right).

In order to be able to neglect time discretization errors, when investigating the spatial accuracy, we
consider the use of a well-known stiffly accurate second order Runge-Kutta-IMEX scheme, taken
from [42, section 2.6], with an extremely small time step size 3.125 · 10−5 which means that roughly
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10000 time steps are used to resolve one full period. The duration of one full cycle is roughly 1/3s.
We also fix the mesh and consider a pure p-refinement, i.e. variations of the polynomial degree k.

For the investigations of the temporal discretization error, we consider a fixed polynomial degree
k = 6, with the same mesh. For the considered example the stability restriction of the second order
IMEX scheme is severe. A time step of below 10−3 has to be considered. The intention of the
discussion of operator-splitting methods in section 3 has been to present strategies to circumvent
or relax these severe conditions. We compare the performance of a product decomposition method,
a second order operator-integration-factor splitting version of the BDF2 method, and the modified
fractional-step-θ-scheme discussed in section 3.3. Note that these methods allows to consider much
larger time steps than the IMEX scheme. As references we give the values from the literature
[61] and from the IMEX scheme with ∆t = 10−3 (stability limit) and the reference solution with
∆t = 3.125 · 10−5.

4.2.4. Numerical results: spatial discretization. In Table III the quantities of interest are shown for
varying polynomial degree k. As a reference we also show the result obtained by FEATFLOW [62]
with a discretization using quadrilateral meshes and continuous second order finite elements for the
velocity with a discontinuous piecewise linear pressure (Q2/P

disc
1 ). These results have been made

accessible on [61]. We observe a rapid convergence for the p-refinement, i.e. the increase of the

#dof max cD min cD max cL min cL

k = 1 2 211 2.52594 2.47871 0.65728 -0.81672
k = 2 4 148 3.22841 3.16260 1.00571 -1.03894
k = 3 6 558 3.23184 3.16842 0.98822 -1.02427
k = 4 9 441 3.22714 3.16401 0.98431 -1.01906
k = 5 12 797 3.22759 3.16432 0.98578 -1.02053
k = 6 16 626 3.22757 3.16430 0.98580 -1.02053

ref. [61] 167 232 3.22662 3.16351 0.98620 -1.02093
667 264 3.22711 3.16426 0.98658 -1.02129

Table III. Accuracy of the spatial discretization: results for different polynomial degrees.

polynomial degree. Compared to the results from the literature [61] the same order of accuracy is
achieved with a lot less degrees of freedoms.

4.2.5. Numerical results: temporal discretization. The results for the temporal discretization are
shown in Table IV. First of all, we observe that the second order IMEX scheme is already very
accurate at its stability limit. But the method does not allow to choose larger time steps. This is in
contrast to the alternative methods discussed here. For these methods we can consider much large
time steps and observe a second order convergence. In this example the product decomposition
method is more accurate than the modified fractional step method by one (time) level. We note that
one major concern with this method is however, that splitting errors appear also if a stationary to
the flow problem exists. This is not the case for additive decomposition methods or the proposed
modified fractional step method.

4.3. A three-dimensional benchmark problem

Finally, we consider a three dimensional benchmark problem, the problem “3D-3Z” in [55]. In
contrast to the problem in section 4.2 the inflow velocity is varied over time and the observed
time interval is fixed. The maximal Reynolds number in this configuration is also Re = 100 as
in the previous section. The focus in this section is on the study of performance in the sense of
computational effort over accuracy.

4.3.1. Geometrical setup and boundary conditions. The geometrical setup is a generalization of the
problem in the previous section. A cylindrical-shaped obstacle is places in a cuboid-shaped channel
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1/∆t max cD min cD max cL min cL

2nd order IMEX
<1 000 unstable

1 000 3.22754 3.16437 0.98486 -1.01957
32 000 3.22757 3.16431 0.98580 -1.02053

operator-integration-
factor splitting

(BDF2)

125 3.38456 3.28279 1.16052 -1.19939
250 3.25564 3.18643 1.01725 -1.05276
500 3.23239 3.16836 0.98864 -1.02378

1 000 3.22819 3.16394 0.98320 -1.02013

modified fractional-
step-θ-scheme

125 3.38272 3.29673 1.07667 -1.12227
250 3.28713 3.21483 1.00937 -1.04840
500 3.25036 3.18127 0.99172 -1.02807

1 000 3.23656 3.17094 0.98721 -1.02227

Table IV. Accuracy of operator-splitting time integration methods

slightly above the vertical center:

Ω := [0, 2.5]×[0, 0.41]×[0, 0.41] \ {‖(x1, x2)− (0.5, 0.2)‖2 ≤ 0.05}. (46)

Boundary conditions are chosen as in the previous example except for a change to unsteady inflow
boundary conditions:

u(0, y, z, t) = uD(t) = (9/4 · ū(t)) · 16 · y(dy−y)/d2
y · z(dz−z)/d2

z · (1, 0, 0),

with ū(t) the average inflow velocity which is time-dependent, ū(t) = sin(πt/8). The considered
time interval is [0, 8s], the viscosity is set to ν = 10−3 s.t. the Reynolds number varies between
Re = 0 and Re = 100.

4.3.2. Drag and Lift. Again, the quantities of interest in this example are the (maximal and
minimal) drag and lift forces cD, cL that act on the disc. These are defined as

cD :=
1

ū2
maxrh

∫
Γ◦

(
ν
∂u

∂n
− pn

)
· ex ds cL :=

1

ū2
maxrh

∫
Γ◦

(
ν
∂u

∂n
− pn

)
· ey ds

with ūmax = maxt∈[0,8] ū(t) = 1, r = 0.05, h = 0.41 and Γ◦ the surface of the obstacle.

Figure 3. Used mesh (left) and solution at t = 0.4 (right) for the benchmark problem in section 4.3.

4.3.3. Numerical setup. We use an unstructured tetrahedral mesh consisting of 5922 elements, cf.
Figure 3. For the time discretization we use the modified fractional-step-θ-scheme discussed in
section 3.3. To compensate for the increase in the spatial accuracy for increasing polynomial degree
k, we adapt the number of time steps accordingly. The computations were carried out on a shared-
memory computer with 24 cores. We comment on details of the computing times in remark 10.
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#ndof [K] max cD max cL min cL ∆t [s] comp. time [s]

k = 2 169 3.43046 0.00262 -0.016289 0.0080 492 × 24
k = 3 343 3.29331 0.00277 -0.011099 0.0080 964 × 24
k = 4 595 3.29853 0.00278 -0.010762 0.0040 3 087 × 24
k = 5 939 3.29798 0.00278 -0.011054 0.0040 6 670 × 24

ref. [56] 11 432 3.2963 0.0028 -0.010992 0.01 35 550 × 24
89 760 3.2978 0.0028 -0.010999 0.005 214 473 × 48

ref. [63] 7 036 3.2968 -0.011

ref. [55] [3.2,3.3] [0.002,0.004]

Table V. Numerical results for the benchmark problem “3D3Z” in [55]. Results obtained with different
polynomial degrees and reference values.

4.3.4. Numerical results. In Table V the results obtained are compared with the literature in terms
of accuracy and computing time. We observe that we can achieve the same level of accuracy as
the results in [56] (and [63]) with a computing time which is dramatically smaller. We note that
the computing time per degree of freedom is actually worse than in [56]. Nevertheless, the same
accuracy is achieved with much less degrees of freedoms using the high order method (k > 2),
s.t. our computations exceed the performance results in the literature. In the study [56] one of
the conclusions is that their third order method (Q2/P

disc
1 ) is much more efficient compared to

lower order methods. We extend this conclusion in the sense that the use of even higher order
discretizations, i.e. k > 2, increases efficiency even further. Moreover, high order discretizations
can be implemented efficiently. One important component for the efficient handling of the Navier-
Stokes equations with our high order discretization is the time integration using operator-splitting.

Remark 10 (Computation times)
We remark on the computation for the case k = 5. In that computation approximately 65% of the
computing time has been spend on the solution of linear systems for Stokes-type problems, 30% on
convection operator evaluations and 5% on the setup and remaining operations. To solve the implicit
convection problem (Step 2 in (40) an average of 20 iterations has been applied.

Remark 11 (Linear systems)
In the test cases in this section we only applied direct solvers which is possible due to the
(comparably) small size of the arising linear systems. For problems with increasing complexity
efficient linear solvers are mandatory. The development of suitable preconditioners of the Stokes
problem is based on efficient preconditioning of the bilinear form Ah. For the scalar problem we
could show poly-logarithmic bounds in k for the condition number of standard p-version domain
decomposition preconditioners, cf. [49]. We plan to investigate suitable generalizations of this
preconditioner for the Stokes problem in the future.

5. CONCLUSION

We presented and discussed a combined DG/HDG discretization tailored for efficiency. We
summarize the core components. We split the Navier-Stokes problem into linear Stokes-type
problems and hyperbolic transport problems by means of operator-splitting time integration. For
the Stokes-type problem we use an H(div)-conforming Hybrid DG formulation with a new
modification: the projected jumps formulation. The Hybrid DG formulation facilitates the efficient
solution of linear systems compared to other DG methods. The projected jumps formulation
improves its efficiency even more. For the hyperbolic transport problem we apply a standard DG
formulation. In numerical test cases we demonstrated the performance of the method.
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16. Schötzau D, Schwab C, Toselli A. Mixed hp-DGFEM for incompressible flows. SIAM Journal on Numerical

Analysis 2002; 40(6):2171–2194.
17. Girault V, Rivière B, Wheeler M. A discontinuous Galerkin method with nonoverlapping domain decomposition

for the Stokes and Navier-Stokes problems. Mathematics of Computation 2005; 74(249):53–84.
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