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Efficient Spectral Methods for the spatially homogeneous
Boltzmann equation

Gerhard Kitzler Joachim Schöberl

May 6, 2013

Abstract

We present a spectral Petrov-Galerkin method for the spatially homogeneous Boltzmann equation.
We approximate the density distribution function by high order multivariate Lagrange polynomials
in Gauss Hermite points, multiplied by a Gaussian peak with adjusted mean and width; the test
functions are polynomials. Our focus is on an efficient scheme for applying the Boltzmann collision
operator. The first improvement is to transform the collision integral to mean and relative velocity
which allows to use cheap numerical integration rules for the first one. The second improvement is
a fast transformation from Lagrange via Hermite to a hierarchical basis in Polar coordinates. In this
basis, the innermost integral operator becomes diagonal. We conclude with a numerical example
demonstrating the achieved speed up.
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1 Introduction

Dealing with the properties of a gas flow, usually means dealing with a huge amount of particles (e.g.
1019 molecules per cm3 at standard conditions). Therefore, instead of describing each individual particle
one introduces a statistical description of the flow: The representation of the gas is given in terms of a
positive density distribution function f = f(t,x,v). The value f(t0,x0,v0) holds the average number
of particles having a position close to x0 and a velocity close to v0 at time t0. Assuming that the gas
of interest is sufficiently dilute, one can neglect collisions involving more than two particles. With this
additional assumption, the effect of collisions is given by the Boltzmann collision operator Q(f):

Q(f)(t,x,v) =

∫
Rd

∫
Sd−1

B(v,w, e′)( f(t,x,v′)f(t,x,w′)− f(t,x,v)f(t,x,w) ) de′ dw, (1)

Simplifying, it consists of a gain and a loss term. The gain term contains the availability of post collision
velocities, whereas on the loss side the availability of pre collision velocities is found. Both of these
availabilities are multiplied with the Boltzmann collision kernel B(v,w, e′) ≥ 0. It holds the proba-
bility for a collision that transfers the pre collision velocities v and w into the post collision velocities
v′ and w′ to happen. The definition of the post collision velocities is done such that mass, momentum
and energy are conserved quantities during a binary collision. This conservation properties yield the
following representation for these velocities:

v′ :=
v + w

2
+ e′
‖v −w‖

2

w′ :=
v + w

2
− e′
‖v −w‖

2
,

(2)

with the unit scattering vector e′.

It is well known that the kernel of the collision operator Q(f) is formed by the Maxwell distributions:

Q(f)(t,x,v) = 0⇔ ∃ ρ(t,x), T (t,x), V(t,x) :

f(t,x,v) =
ρ(t,x)

(πT (t,x))
d
2

e
− |v−V(t,x)|2

T (t,x) ,

where ρ, T, V are the macroscopic quantities mean density, mean temperature and mean velocity.

The time evolution of f is governed by the Boltzmann equation [1–3]:

∂f

∂t
+ divx(v f) = Q(f). (3)

On the left hand side of (3), there is in general the Boltzmann transport operator divx(v f), correspond-
ing to spatial transport of the particles. Although the full Boltzmann equation (3) is of great interest, we
focus in this report on efficiency of our method for the spatially homogeneous Boltzmann equation:

∂f

∂t
= Q(f). (4)

For a discretization of (3) resp. (4) various methods have been proposed. A majority of them is based
on Monte Carlo methods. These methods are of big interest because of their simplicity. The drawback
within these methods is the accuracy, i.e. for accurate results many samples are necessary. Whatever the
circumstances are, in a hydrodynamic limit, they are almost perfect.
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On the other hand there are a lot of deterministic methods. The main problem of such methods is the
evaluation of the collision operator arising in (3) resp. (4): Typically the numerical effort to evaluate
this operator is O(N4) for a N by N grid in the velocity space. For the deterministic methods, fast
Fourier transformation is one of the popular methods to evaluate the collision integral. Especially for
Maxwellian molecules, where B = const, the collision integral becomes relatively simple in a Fourier
representation (see [4]). This representation was used in [5], where a difference scheme was constructed
for the solution of (3). The same simplification was also used to derive a deterministic numerical scheme
in [6]. To extend this, the authors of [5] have also investigated the Boltzmann collision integral for the
hard sphere model by means of the fast fourier transformation [7].
Moreover, within the deterministic methods there are also the discrete velocity methods, which are for
instance considered in [8, 9]. They are based on a uniform grid in the velocity domain. Then, a discrete
collision mechanics is constructed to preserve the main physical properties. The disadvantage within
these methods is their high computational costs, compared to their accuracy.

Our method falls into the category of the deterministic ones and is a Petrov-Galerkin method in the
velocity domain. We use a set of global basis functions in the momentum domain, and therefore no
assumptions on compact support in the momentum domain are needed. The method conserves macro-
scopic quantities such as the density, velocity and energy of the gas of interest. In addition to a straight-
forward discretization of the collision integrals we present a technique for the collision operator with a
complexity of only N3.
In the next section we derive the basic method. Within section 3 we reduce the complexity for the ap-
plication of the collision integral to N3. This is done by making use of certain properties of different
sets of orthogonal polynomials. For keeping the presentation as simple as possible we let B ≡ 1 for
the presentation. Especially within section 3, the details have to be adjusted for different models of the
collision kernel. Section 4 gives some basic properties of the method. In the last section, we conclude
with the presentation of numerical examples.

2 The spatially homogeneous Boltzmann equation

The spatially homogeneous Boltzmann equation is obtained by assuming that ∂f
∂xi

= 0 (i.e. the distri-
bution function is independent of the spatial variable x). Therefore, Boltzmann equation reduces to it’s
spatially homogeneous case:

∂f

∂t
= Q(f), (5)

or more suitable for our purpose

∂

∂t

∫
Rd

fφ dv =

∫
Rd

Q(f)φdv ∀φ suitable. (6)

To keep notation as simple as possible, the x dependency of f is skipped for the rest of the presentation.
For discretization, we perform a Petrov-Galerkin method. The Ansatzspace for the discrete solution fN
is denoted by V v

N := e−|v|
2
PN (Rd), where PN (Rd) is the space of polynomials on Rd with partial

degree at most N . d ∈ {2, 3} is the space dimension. Thus the discrete space is a weighted polynomial
space and an element f ∈ V v

N at a fixed point in time can be expanded into a sum of polynomial basis
functions times a Gaussian peak:

f(v) = e−|v|
2
nv∑
m=0

cm Lm(v), (7)
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where Lm, m = 0 . . . nv denotes a polynomial basis in V v
N . The space for the test functions φ, is

defined as Wv
N := e|v|

2
V v
N .

Using the above expansion and testing the homogeneous Boltzmann equation with the i-th basis poly-
nomial leads to

∂

∂t

∫
Rd

e−|v|
2
nv∑
m=0

cm(t)Lm(v)Li(v) dv =

∫
Rd

Q(fN )Li dv (8)

Thus, by reordering the terms on the left hand side of (8), one immediately recognizes a mass matrix
Mv ∈ Rnv+1×nv+1

Mv ∂

∂t


c0(t)

...
cnv(t)

︸ ︷︷ ︸
:=c(t)

=

∫
Rd

Q(fN )Li dv, (9)

with Mv
i,j =

∫
Rd

e−|v|
2
Li(v)Lj(v) dv.

Polynomial basis in V v
N :

In order to introduce a suitable polynomial basis for V v
N some more notation is needed: By the pair

(ωk, xk)k=0... N a Gauss-Hermite quadrature rule of length N + 1 is denoted. ωk represents the in-
tegration weights, xk the integration nodes, thus

∫
R e
−v2p(v) ≈

∑N
i=0 ωk p(xk). The Gauss-Hermite

quadrature rules evaluate the integrals
∫
R e
−v2p(v) dv exact for polynomials p up to order 2N + 1.

Now let hi(v) ∈ P i(R) be the Hermite-polynomial of degree i. The Hermite-polynomials are a hier-
archical family of polynomials on R and orthogonal with respect to the weighted L2 inner product∫
R e
−v2f(v) g(v) dv. In addition by H0

N := {x0, . . . , xN} the roots of hN+1 are denoted and by
LN := { ln(v), n = 0, . . . , N } the set of Lagrange-Polynomials to the nodes in H0

N is defined (i.e
lm(xk) = δm,k). The Lagrange polynomials lm satisfy 2 nice relations:∫

R

e−v
2
li(v) lj(v) dv

quad.
=
∑
k

ωkli(xk) lj(xk) = ωiδi,j (10)

As stated above, the Gauss-Hermite quadrature rule is exact for polynomials of degree at most 2N + 1
which is satisfied by the product of Lagrange polynomials. Therefore, applying the quadrature rule and
using lm(xk) = δm,k, immediately yields the same orthogonality relation as for the Hermite polynomi-
als (up to a constant).
Another useful relation is the next one, which can be seen just as the previous one (Remark that the
integral is still exactly evaluated by the quadrature rule).∫

R

e−v
2
v li(v) lj(v) dv

quad.
=
∑
k

ωkxkli(xk) lj(xk) = ωixiδi,j (11)

By forming tensor products of this 1D functions one ends up with the d-dimensional basis functions
Lm(vx, vy) := li(vx)lj(vy), for d = 2 where i, j = 0 . . . N m = i + nvj. In addition we denote the
tensored sets of integration resp. collocation nodes as H0

N,d, and the tensored nodes as xj,d.

Now, using these basis functions for discretization, the mass matrix on the left hand side decouples into
a diagonal matrix (d = 2):
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Mv
u,v =

∫
Rd

Lu(vx,vy)Lv(vx,vy) d(vx,vy) =

∫
R

∫
R

liu(vx)lju(vy)liv(vx)ljv(vy) dvx dvy

=

∫
R

liu(vx)liv(vx)dvx

︸ ︷︷ ︸
=δiu,ivωiu

∫
R

lju(vy)ljv(vy) dvy

︸ ︷︷ ︸
=δju,jvωju

= δu,vω̃u
(12)

The collision operator on the right hand side is investigated via a different but equal representation of∫
Rd

Q(fN )φ:

Theorem 1. For all suitable φ there holds∫
Rd

Q(fN )(v)φ(v) dv =

∫
Rd

∫
Rd

∫
Sd−1

B(v,w, e′)fN (v)fN (w)[φ(v′)− φ(v)] de′ dw dv

=

∫
Rd

∫
Rd

∫
Sd−1

B(v,w, e′)[fN (v)fN (w)− fN (v′)fN (w′)]×

[φ(v′) + φ(w′)− φ(v)− φ(w)] de′ dw dv.

, (13)

with the post collision velocites defined in (2)

Proof. A more general version of Theorem 1 is proven in [1].

Representation (13) has no dependency on the post collision velocity w′, moreover the post collision
velocities have been transferred to the test function. Using this representation one finds that the dis-
cretization of

∫
Rd

Q(fN )φ becomes a 3rd-order tensor:

∫
Rd

Q(fN )φ(v) dv =

∫
Rd

∫
Rd

∫
Sd−1

fN (v)fN (w)[φ(v′)− φ(v)] de′ dw dv

=

nv∑
m,n=0

cmcn

∫
Rd

e−|v|
2

∫
Rd

e−|w|
2

∫
Sd−1

Lm(v)Ln(w)[Lj(v
′)− Lj(v)] de′ dw dv

︸ ︷︷ ︸
=:qm,n,j

=

nv∑
m,n=0

cmcnqm,n,j =: Qnv(c)j

(14)

(14) can also be written as a matrix-vector multiplication: Qnv(c) = Qc̃, where Q ∈ Rnv+1×(nv+1)2

and c̃ ∈ R(nv+1)2 :
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c̃ =



c0c0
...

cnvc0
...

c0cnv

...
cnvcnv


and Q =



q0,0,0, . . . qnv,0,0 . . . q0,nv,0 . . . qnv,nv,0

q0,0,1, . . . qnv,0,1 . . . q0,nv,1 . . . qnv,nv,1
...

...
...

...
q0,0,nv , . . . qnv,0,nv . . . q0,nv,nv . . . qnv,nv,nv


(15)

Thus, ≈ n3
v ≈ N6 (N corresponds to the polynomial order in one space direction, nv = (N + 1)2− 1)

floating point operations are performed for the application of the discrete collision operator.

Collecting everything together, a system of Ode’s for the coefficients cj is found:

Mvċ = Qc̃

For time integration a simple forward euler scheme is used. Denote by cj ≈ c(tj), j = 0 . . . jt the
approximation to the coefficient vector at time tj , c0 holds the initial distribution. Now the euler scheme
yields the following representation for cj+1:

cj+1 = cj + ∆tM
−1
v Qc̃j , j ≥ 1

where ∆tj = tj − tj−1. As has already been seen, the inverse M−1
v is easy to compute since Mv is a

diagonal matrix.

In the following the amount for the application of the collision operator will be reduced to ≈ n3
v

operations:

2.1 Collision integral in terms of relative velocities

By transforming to mean and relative velocities,

v̄ := v+w
2 , v̂ := |v−w|

2 (16)

the collision integral takes the form∫
R2

Q(f)φ(v) dv =

∫
R2

∫
R2

∫
S1

f(v)f(w)[φ(v′)− φ(v)] de′ dvdw

= 4

∫
R2

∫
R2

∫
S1

f(v̄ + v̂)f(v̄ − v̂)[φ(v̄ + e′|v̂|)− φ(v̄ + v̂)] de′dv̂ dv̄,

(17)

Now by defining the shifted functions f v̄(v̂) = f(v̄ + v̂), the integral becomes∫
R2

Q(f)φ(v) dv = 4

∫
R2

∫
R2

∫
S1

f v̄(v̂)f v̄(−v̂)[φv̄(e′|v̂|)− φv̄(v̂)] de′dv̂ dv̄

6



In terms of the basis polynomials, the product of f evaluations is a polynomial of the double degree
than the polynomials in the Ansatzspace. Thus, this polynomial can be represented exactly by Lagrange
polynomials of the double degree. Representing f (2)(v) := f v̄(v̂)f v̄(−v̂), one arrives with∫

R2

Q(f)φ(v) dv = 4

∫
R2

∫
R2

∫
S1

f (2)(v̂)[φv̄(e′|v̂|)− φv̄(v̂)] de′dv̂

︸ ︷︷ ︸
:=QI(f)(v̄)

dv̄

Now let

f(v̄ + v̂) = e−|v̄+v̂|2
nv∑
i=0

ciLi(v̄ + v̂) = e−|v̄+v̂|2
nv∑
i=0

c̃iLi(v̂) = f v̄(v̂)

With v̂ = xj,d and xj,d a node out of the already mentioned Gauss-Hermite quadrature rule of appro-
priate length, one has

c̃j =

nv∑
i=0

ciLi(v̄ + xj,d)

or in more compact form
c̃ = Sv̄c

with Sv̄ ∈ Rnv+1×nv+1, Sv̄
i,j = Lj(v̄ + xi,d), and c resp. c̃ being the vector quantities formed of ci

resp. c̃i.

Remark 2. A direct calculation of this matrix-vector multiplication needs n2
v ≈ N4 floating point

operations. Using the tensor product structure of V v
N this calculation can be performed in ≈ n

3/2
v

floating point operations: Let cmat ∈ RN×N , with cmat
i,j = ci(N+1)+j be a matrix wise representation

of the coefficient vector c. In addition define the 1D shift matrices Sv̄x ∈ RN×N resp. Sv̄y ∈ RN×N ,
with S

v̄x/y
i,j = lj(v̄x/y + x

x/y
i ). Then the resulting matrix c̃mat of the product

Sv̄ycmat(Sv̄x)T = c̃mat,

is a matrix wise representation of the coefficient vector c̃, such that c̃i(N+1)+j = c̃mat
i,j . Both matrix

multiplications can be performed in N3 ≈ n3/2
v operations.

For the calculation of the function f (2)(v̂) we denote the Lagrange polynomials corresponding to the
double degree and the corresponding quadrature nodes with L̂m resp. x̂k,d. The resulting Gaussian peak
of the function f (2) is given by the product of the shifted Gauss peaks:

f (2)(v̂) = e−|v̄+v̂|2
nv∑
i=0

c̃iLi(v̂)e−|v̄−v̂|
2
nv∑
i=0

c̃iLi(−v̂)

= e−2|v̄|2−2|v̂|2
nv∑
i=0

c̃iLi(v̂)

nv∑
i=0

c̃iLi(−v̂)

Thus, the appropriate Gauss peak for f (2) is given by e−2|v̄|2−2|v̂|2 and therefore, the Ansatz for f (2) is:

f (2)(v̂) = e−2|v̄|2−2|v̂|2
∑
i

ĉiL̂i(v̂). (18)
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For the tensor product of double degree polynomials, the corresponding number of basis functions is
given by 4(nv −N) := n

(2)
v , yielding

nv∑
i=0

c̃iLi(v̂)

nv∑
i=0

c̃iLi(−v̂) =

4n
(2)
v∑

i=0

ĉiL̂i(v̂)

for the polynomial part of f (2). Again, as for the shifting matrices we use v̂ = x̂k,d, to end up with

ĉk =

nv∑
i=0

c̃iLi(x̂k,d)

nv∑
i=0

c̃iLi(−x̂k,d) k = 0, . . . , n
(2)
v .

This calculation now needs nvn
(2)
v ≈ N4 floating point operations.

Remark 3. The presented approach uses basis functions of the same polynomial degree for both,
the shifted and non shifted functions. An alternative is given by the usage of Lagrange polynomi-
als L̂m of the double degree for the representation of the shifted function. This makes the shifting
of course more expensive in the sense of floating point operations, but still bounded by N3. The
benefit of the alternative lies in the calculation of the coefficients of f (2): The resulting represen-
tation of f v̄(v̂) = e−|v̄+v̂|2∑nv

i=0 c̃iL̂i(v̂) yields (using the symmetry of the collocation nodes, i.e.
x̂k,d = −x̂

n
(2)
v −k,d

):

ĉk =

nv∑
i=0

c̃iL̂i(x̂k,d)︸ ︷︷ ︸
=c̃k

nv∑
i=0

c̃iL̂i(−x̂k,d)︸ ︷︷ ︸
=c̃

n
(2)
v −k

k = 0, . . . , n
(2)
v

= c̃k c̃n
v(2)−k

(19)

Within this alternative the calculation of f (2) is performed within N3 floating point operations.

Plugging (18) into the collision integral one finds∫
R2

Q(f)φ(v) dv = 4

∫
R2

∫
R2

∫
S1

f (2)(v̂)[φv̄(e′|v̂|)− φv̄(v̂)] de′dv̂ dv̄

= 4

n
(2)
v∑
i=0

∫
R2

ĉie
−2|v̄|2

∫
R2

e−2|v̂|2
∫
S1

L̂i(v̂) [φv̄(e′|v̂|)− φv̄(v̂)] de′dv̂ dv̄

(20)

For the shifted test functions, the procedure is very similar: With the Ansatz

Lj(v̄ + v) =

nv∑
k=0

φjkLk(v)

and v = xk,d, one finds φjk = Lj(v̄ + xk,d) and ends up with:

Lj(v̄ + v) =

nv∑
k=0

Lj(v̄ + xk,d)Lk(v)

8



Again, in compact form
L(v̄ + v) = Sv̄,φL(v̄),

with Sv̄,φ
i,j = Li(v̄ + xj,d), i, j = 0 . . . nv, thus there holds Sv̄,φ = Sv̄T .

Testing with all test functions simultaneously, the collision integral takes the form

∫
R2

Q(f)φ(v) dv = 4

n
(2)
v∑
i=0

ĉi

∫
R2

e−2|v̄|2
∫
R2

e−2|v̂|2
∫
S1

L̂i(v̂) [Sv̄TL(e′|v̂|)− Sv̄TL(v̂)] de′dv̂ dv̄

= 4

n
(2)
v∑
i=0

ĉi

∫
R2

e−2|v̄|2Sv̄T
∫
R2

e−2|v̂|2
∫
S1

L̂i(v̂) [L(e′|v̂|)− L(v̂)] de′dv̂ dv̄

,

with L = (L0 . . . Lnv)T .
For numerical purposes (stability of the oversampling process) it is reasonable to calculate the integrals
after scaling the integral by a factor 1√

2
, thus let ŵ =

√
2v̂ resp. w̄ =

√
2v̄:

∫
R2

Q(f)φ(v) dv =

n
(2)
v∑
i=0

ĉi

∫
R2

e−|v̄|
2
S

v̄√
2

T ∫
R2

e−|v̂|
2

∫
S1

L̂i

(
v̂√
2

) [
L
(
e′|v̂|√

2

)
− L

(
v̂√
2

)]
de′dv̂ dv̄

Now by pre assembling the integrals with respect to the variables e′ and v̂, the following representation
is found for the application of the collision integral:∫

R2

Q(f)φ(v) dv = 4

∫
R2

e−|v|
2
S

v̄√
2

T

QI ĉ dv̄,

with QI ∈ Rnv×nv
(2)

and QIi,j =
∫
R2

e−|v̂|
2 ∫
Sd−1

L̂j

(
v̂√
2

) [
Li

(
e′|v̂|√

2

)
− Li

(
v̂√
2

)]
de′dv̂.

The matrix-vector multiplicationQI ĉ needs≈ N4 floating point operations. Note that we used the same
symbol for denoting the inner collision integrals with respect to e′ and v̂ and for the matrix resulting

from these inner collision integrals. The back shift, corresponding to the multiplication with S
v̄√
2

T

can
again be factorised in vx and vy direction to save operations and result in cN3 operations for the back
shift.
Now within the time loop, the integral with respect to v̄ is evaluated via a quadrature rule (a Gauss-
Hermite rule). Therefore we end up in a total application cost for the application of the collision operator
of≈ N4nip, where nip is the number of integration points used in the above mentioned quadrature rule.

2.2 Collision integral in polar coordinates - polar basis for V v
N

One more optimization can be achieved by making use of polar coordinates, in the collision integral
and in the space V v

N . With this transformation one additional power of N can be saved in applying the
inner collision operator. Transforming the collision integral into polar coordinates yields:∫

R2

Q(f)φ(v) dv =

∫
R2

∫
R+

r
[∫
S1

f (2)(re) de

∫
S1

φv̄(re) de− 2π

∫
S1

f (2)(re)φv̄(re) de
]
dr dv̄ (21)
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In (r, ϕ) coordinates, f (2) is expressed via

f (2)(r, ϕ) = e−2|v̄|−2r2
n
(2)
v∑

m=0

ĉmL̂m(re), (22)

where e = (cos(ϕ), sin(ϕ))T .

Definition 4. By Ψ
cos / sin
j,k (v) the Polar-Laguerre functions are denoted:

Ψcos
j,k (v) :=


cos(2jϕ)r2jL(2j)

k
2−j

(r2), k ∈ 2N

cos((2j + 1)ϕ)r2j+1L(2j+1)
k−1

2 −j
(r2), k ∈ 2N + 1

and

Ψsin
j,k(v) :=


sin(2jϕ)r2jL(2j)

k
2−j

(r2), k ∈ 2N

sin((2j + 1)ϕ)r2j+1L(2j+1)
k−1

2 −j
(r2), k ∈ 2N + 1

The corresponding sets in addition are denoted by:

Lcos
k := {Ψcos

j,k : j = 0 . . .
[
k
2

]
}

Lsin
k := {Ψsin

j,k : j = 1− (k mod 2) . . .
[
k
2

]
}.

L(j)
k (x) is the associated Laguerre polynomial of order k. They satisfy [10]:∫

R+

e−xxαL(α)
k (x)L(α)

k′ (x) dx = δk,k′
Γ(k + α+ 1)

k!

α∈N
= δk,k′

(k + α)!

k!

The next few Lemmata state some basic properties of the functions in Lsin / cos
k :

Lemma 5. The Polar-Laguerre functions Ψ
cos / sin
j,k are polynomials in Cartesian coordinates of total

degree k.

Proof. Use, that

cos(nϕ) =

[
n
2 ]∑
j=0

(
n

2j

)
sin(ϕ)2j cos(ϕ)n−2j sin(nϕ) =

[
n−1

2 ]∑
j=0

(
n

2j + 1

)
sin(ϕ)2j+1 cos(ϕ)n−2j−1

With this representation of the trigonometric part one finds for the elements of Lcos
k (for even k):

f ∈ Lcos
k ⇔ f =

j∑
i=0

(
2j

2i

)
sin(ϕ)2i cos(ϕ)2j−2iL2j

k
2−j

(r2)r2j

=

j∑
i=0

(
2j

2i

)
sin(ϕ)2ir2i︸ ︷︷ ︸

y2i

cos(ϕ)2j−2ir2j−2i︸ ︷︷ ︸
x2j−2i

L2j
k
2−j

(r2)

=

j∑
i=0

(
2j

2i

)
y2ix2j−2iL2j

k
2−j

(x2 + y2)

10



The monomial y2ix2j−2i is a polynomial of total degree 2j. Multiplying with the Laguerre polynomial
L(2j)
k
2−j

(x2 +y2), which is a polynomial in cartesian coordinates of degree 2(k2 −j) = k−2j, results in a

polynomial of total degree k. For the functions in Lsin
k , and also for odd k the strategy is the same.

Lemma 6. The set LK := {Lcos
k ∪ Lsin

k : k = 0 . . .K} forms a basis of the polynomial space on R2 of
total degree at most K.

Proof. Observe that the polynomials in Lcos / sin
k are hierarchical, thus functions in Lk and Lk′ are

linearly independent. Thus for linearly independence it remains to show, that the functions in Wk :=
Lcos
k ∪ Lsin

k are linearly independent. For this purpose we use the fact, that the roots of the Laguerre
polynomial L(j)

n are positive and real for natural j, and that they are bounded by n+j+(n−1)
√
n+ j.

Now checking for linear independence results in∑
cj cos(2jϕ)r2jL(2j)

k
2−j

(r2) + sj sin(2jϕ)r2jL(2j)
k
2−j

(r2)
!

= 0

Choosing r0 sufficiently large yields∑
c̃j cos(2jϕ) + s̃j sin(2jϕ)

!
= 0,

with c̃j = cjL(2j)
k
2−j

(r2
0)r2j

0 and s̃j = sjL(2j)
k
2−j

(r2
0)r2j

0 . The linear independence of the trigonometric

functions immediately yields c̃j resp. s̃j = 0, j = 0 . . . k2 and since L(2j)
k
2−j

(r2) 6= 0, one concludes

cj resp. sj = 0, j = 0 . . . k2 . Doing the same for odd k and counting the dimension of the space Lk
finally yields the basis property.

Lemma 7. The Polar-Laguerre polynomials are orthogonal with respect to the inner product
< f, g >:=

∫
R2

e−|v|
2
f(v)g(v) dv.

Proof. We calculate the inner product < Ψa
j,k,Ψ

b
j′,k′ >, a, b ∈ {cos, sin} for even k and k′:

< Ψa
j,k,Ψ

b
j′,k′ > =

∫
R2

e−|v|
2
Ψa
j,k(v)Ψb

j′,k′(v) dv

v=r

(
cos(ϕ)
sin(ϕ)

)
=

∞∫
0

re−r
2

2π∫
0

a(2jϕ)L(2j)
k
2−j

(r2)b(2j′ϕ)L(2j′)
k′

2 −j
′
(r2) dϕ dr

= (1 + δ0,j)δj,j′δa,bπ

∞∫
0

re−r
2L(2j)

k
2−j

(r2)L(2j)
k′

2 −j
(r2) dr

r2=r̃
= 1

2(1 + δ0,j)δj,j′δa,bπ

∞∫
0

e−rL(2j)
k
2−j

(r)L(2j)
k′

2 −j
(r) dr

= 1
2(1 + δ0,j)δj,j′δa,bδk,k′π

(k2 + j)!

(k2 − j)!

As with the proof of Lemma 6, the situation is quite similar for odd k and also for a combination of
even and odd k resp. k′.
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Now, remember the fact that f (2) is a polynomial of total degree 4N . Thus, using the Polar-Laguerre
basis L4N , the function f (2) can be represented exactly. The same holds for the test polynomials, which
are polynomials of total degree 2N , just as the function f itself. This enables us to also represent the
test functions exactly in the Polar-Laguerre basis.
Let

f (2)(v̂) = e−2|v̄|2−2|v̂|2
n
(2)
v∑

n=0

ĉmL̂m(v̂) = e−2|v̄|2−2r2
4N∑
k=0

j≤[
k
2 ]

f cos
j,k Ψcos

j,k (
√

2re) + f sin
j,kΨsin

j,k(
√

2re) (23)

The scaling in the arguments of the basis functions is to obtain a sparse inner collision operator. Similar,
for the test functions φv̄ one has the representation

φv̄ =
2N∑
j=0

φcos
j,kΨcos

j,k (
√

2re) + φsin
j,kΨ

sin
j,k(
√

2re). (24)

Now, the orthogonality relations of the polar basis polynomials are used to proof the following

Lemma 8. With the representations (23) and (24), the contribution to
∫
R2

Q(f)φ(v) dv vanishes for

polynomial degree larger than 2N .

Proof. Plugging representations (23) and (24) into (21) yields:∫
R2

Q(f)φ(v) dv

=

4N∑
k=0

j≤[
k
2 ]

2N∑
k′=0

j′≤[
k′

2 ]

∫
R2

e−|v̄|
2

∫
R+

re−r
2
[∫
S1

f cos
j,k Ψcos

j,k (re) + f sin
j,kΨsin

j,k(re) de

∫
S1

φcos
j′,k′Ψ

cos
j′,k′(re) + φsin

j′,k′Ψ
sin
j′,k′(re) de

− 2π

∫
S1

(
f cos
j,k Ψcos

j,k (re) + f sin
j,kΨsin

j,k(re)
)(
φcos
j′,k′Ψ

cos
j′,k′(re) + φsin

j′,k′Ψ
sin
j′,k′(re)

)
de
]
dr dv̄

Due to the line integrals along Sd−1 the above equation simplifies to∫
R2

Q(f)φ(v) dv

=
4N∑
k∈2N

2N∑
k′∈2N

4π2

∫
R2

e−|v̄|
2

∫
R+

re−r
2
f cos

0,kL
(0)
k
2

(r2)φcos
0,k′L

(0)
k′

2

(r2) dr dv̄

− 2π2(1 + δ0,j′)
4N∑
k=0

2N∑
k′=0

j′≤[
k′

2 ]

∫
R2

e−|v̄|
2

∫
R+

re−r
2(
f cos
j′,kφ

cos
j′,k′ + f sin

j′,kφ
sin
j′,k′
)
L(2j′)

[
k
2 ]−j′

(r2)L(2j′)

[
k′

2 ]−j′
(r2)r4j′ dr dv̄
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By the substitution r̃ = r2, yielding 2r dr = dr̃ one obtains finally (tilde sign was removed):∫
R2

Q(f)φ(v) dv

= 2π2
4N∑
k∈2N

2N∑
k′∈2N

∫
R2

e−|v̄|
2

∫
R+

e−rf cos
0,kL

(0)
k
2

(r)φcos
0,k′L

(0)
k′

2

(r) dr dv̄

− π2(1 + δ0,j′)

4N∑
k=0

2N∑
k′=0

j′≤[
k′

2 ]

∫
R2

e−|v̄|
2

∫
R+

e−r
(
f cos
j′,kφ

cos
j′,k′ + f sin

j′,kφ
sin
j′,k′
)
L(2j′)

[
k
2 ]−j′

(r)L(2j′)

[
k′

2 ]−j′
(r)r2j′ dr dv̄

= 2π2
2N∑

k′∈2N

∫
R2

e−|v̄|
2
f cos

0,k′φ
cos
0,k′ dv̄ − π2(1 + δ0,j′)

2N∑
k′=0

j′≤[
k′

2 ]

(k
′

2 + j′)!

(k
′

2 − j′)!

∫
R2

e−|v̄|
2
(f cos
j′,kφ

cos
j′,k′ + f sin

j′,k′φ
sin
j′,k′) dv̄

(25)

Lemma 8 plays an important role, when transforming f (2) to the Polar-Laguerre basis: Using a basis
of order 4N , clearly f (2) and the test functions are represented exactly. The contribution of a basis
polynomial with total degree smaller than 4N to f (2) is the same, regardless whether a polar basis of
order 4N or smaller is used. Thus, it is natural to use a Polar-Laguerre basis of order 2N , since even if
f (2) is not represented exactly by these polar polynomials (in contrast to the test functions, which can
be expressed exactly), the effect of the collision is still exact.

3 Fast transformations of polynomial bases

As has been seen in Lemma 8, there is no collision effect on basis functions corresponding to a poly-
nomial degree ≥ 2N . The overall effect of the collision is the same if a transformation of f (2) to a
Polar-Laguerre basis of order 4N or 2N is performed. Of course, the latter needs less operations in
practice.
For speeding up the transformations, a second basis, HK of the space span{LK} is introduced. Let hj
denote the (1D) scaled Hermite polynomial of order j, such that ‖hj‖L2(R,e−v2 )

= 1. By forming the
s+ 1 multivariate polynomials of total order s

Hs,j(v) := hj(vx)hs−j(vy), j = 0 . . . s,

another basis of span{LK} is given by

HK := {Hs,j(v) : j = 0 . . . s, s = 0 . . .K}.

These Hermite polynomials are now used as intermediate basis while transforming from the Lagrange
to the Polar-Laguerre basis. The benefit of these Hermite polynomials is their hierarchical behaviour
and the separated variables. The separated variables result in a cheap transformation from Lagrange
basis to the Hermite basis by making use of the tensor product structures. The hierarchical behaviour
yields sparse transformation matrices when transforming from Hermite to polar basis.
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f, Lagrange

f(2), Lagrange

f(2), Polar

P2N( f(2) ), Polar

Figure 1: Polynomial orders for f , f (2) described in Lagrange basis and in a hierarchical basis. The red
resp. blue markers represent the basis functions of partial order N resp. 2N . The gray shaded domains
correspond to the polynomial orders, when describing f (2) in polar resp. Hermite basis. The lighter
gray domain corresponds to an exact representation, while the darker domain corresponds to an inexact
representation of f (2) but is still exact for

∫
R2

Q(f)φ, with φ ∈ P 2N .

3.1 Nodal to Hermite Transformation

We start with f (2) = e−2|v̂|
n
(2)
v∑
i=0

ĉiL̂i(v̂) and are looking for coefficients hs,j , such that

f (2)(v̂) = e−2|v̂|
n
(2)
v∑
i=0

ĉiL̂i(v̂) = e−2|v̂|
2N∑
k=0
j≤k

hk,jHk,j(
√

2v̂)

Note that the Lagrange polynomials cannot be represented exactly by the Hermite polynomials of total
degree smaller than 2N (4N would fit). But as has been worked out before, the higher polynomial
degrees would not cause any contribution to the collision integrals.
Now we use the L2-orthogonal projection onto the space of polynomials of total degree smaller than
2N (with the Hermite polynomials forming the basis):

n
(2)
v∑
i=0

ĉi

∫
R2

e−2|v̂|L̂i(v̂)Hk0,j0(
√

2v̂) dv̂ =

2N∑
k=0
j≤k

hk,j

∫
R2

e−2|v̂|Hk,j(
√

2v̂)Hk0,j0(
√

2v̂) dv̂
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The right hand side turns into

2N∑
k=0
j≤k

hk,j

∫
R2

e−2|v̂|2Hk,j(
√

2v̂)Hk0,j0(
√

2v̂) dv̂ =

2N∑
k=0
j≤k

hk,j

∫
R

∫
R

e−2v̂2
x−2v̂2

yhk−j(
√

2v̂y)hj(
√

2v̂x)hk0−j0(
√

2v̂x)hj0(
√

2v̂x) dv̂x dv̂y =

2N∑
k=0
j≤k

hk,j

∫
R

e−2v̂2
xhj(
√

2v̂x)hj0(
√

2v̂x) dv̂x

︸ ︷︷ ︸
=δj,j0

1√
2

∫
R

e−2v̂2
yhk−j(

√
2v̂y)hk0−j0(

√
2v̂y) dv̂y

︸ ︷︷ ︸
=δk−j,k0−j0

1√
2

=
1

2
hk0,j0

On the left hand side it is useful to factorise the sum via

n
(2)
v∑
i=0

ĉi

∫
R2

e−2|v̂|L̂i(v̂)Hk0,j0(
√

2v̂) dv̂ =

2N∑
m=0

2N∑
m̃=0

ĉm(2N+1)+m̃

∫
R

l̂m(v̂x)hk0−j0(
√

2v̂x)e−2v̂2
x dvx

︸ ︷︷ ︸
:=N2Hm,k0−j0

∫
R

l̂m̃(v̂y)hj0(
√

2v̂y)e
−2v̂2

y dvy

︸ ︷︷ ︸
:=N2Hm̃,j0

Now, by replacing the sum with an ”row · column”-wise product, one ends up with

1

2
hk0,j0 =

2N∑
m=0

N2Hm,k0−j0

N2H0,j0 ,N2H1,j0 . . .N2H2N,j0




ĉm(2N+1)

ĉm(2N+1)+1
...

ĉm(2N+1)+2N


Going one step further, ordering the coefficients ĉm(2N+1)+m̃ into a matrix representation, the left hand
side can be computed as a matrix · matrix · matrix-product:

1

2
hk0,j0 =

[
N2H · ĉmat · N2HT

]
k0−j0,j0 ,

where

N2Hi,j =

∫
R

l̂j(v)hi(
√

2v)e−2v2 dv i, j = 0 . . . 2N

and

ĉmat
i,j = ĉi(2N+1)+j i, j = 0 . . . 2N

Thus, by first calculating the matrix-matrix product m := cmat · N2HT and afterwards the product
N2H ·m, the floating point operations needed for the transformations are bounded by ≈ (2N)3.
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Transformation of test functions:
Again, for the test functions Lk, k = 0, . . . , nv the procedure is quite similar: We take an arbitrary
Lagrange basis polynomial li(vx)lj(vy), 0 ≤ i, j ≤ N and write

li(vx) lj(vy) =

2N∑
k=0
j≤k

hk,jhk−j(
√

2vy)hj(
√

2vx)

Note, that the 2-dimensional index corresponds to coefficients, while the 1d to the Hermite polynomials.
Now, testing both sides with e−2|v|2hk0−j0(

√
2vy)hj0(

√
2vx) yields:∫

R2

e−2|v|2hk0−j0(
√

2vy)hj0(
√

2vx)li(vx) lj(vy) d(vx, vy) =

2N∑
k=0
j≤k

hk,j

∫
R2

e−2|v|2hk0−j0(
√

2vy)hj0(
√

2vx)hk−j(
√

2vy)hj(
√

2vx) d(vx, vy)

As for f (2), the right hand side turns into

2N∑
k=0
j≤k

hk,j

∫
R2

e−2|v|2hk0−j0(
√

2vy)hj0(
√

2vx)hk−j(
√

2vy)hj(
√

2vx) d(vx, vy) =
1

2
hk0,j0 ,

resulting in
1

2
hk0,j0 = N2Hj0,i · N2Hk0−j0,j

and therefore lm(vx) ln(vy) has the representation

lm(vx) ln(vy) =
2N∑
k=0
j≤k

N2Hj,m · N2Hk−j,n2hk−j(
√

2vy)hj(
√

2vx)

Summarizing, this can again be computed simultaneously:

lm(vx) ln(vy) =
[
N2HT ·H · N2H

]
m,n

with

N2Hi,j =

∫
R

e−x
2
hi(
√

2x)lj(x) dx, i = 0, . . . , 2N, j = 0, . . . , N

and

H ∈ R2N+1×2N+1 Hi,j =

{
2hi(
√

2vx)hj(
√

2vy) i+ j ≤ 2N
0 else

The transformation of the test functions is useful when having calculated the integrals in terms of the
Hermite polynomials resp. Laguerre polynomials as test functions. The result within these test functions
are then transformed to back, to the Lagrange polynomials as test functions.

The next step is now the transformation to the polar basis:
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3.2 Hermite to Polar-Laguerre Transformation

With f (2)(v̂) = e−2|v̂|
2N∑
k=0
j≤k

hk,jHk,j(
√

2v̂), we’re looking for coefficients f cos
j,k resp. f sin

j,k such that

f (2)(v̂) = e−2|v̂|
2N∑
k=0
j≤k

hk,jHk,j(
√

2v̂) = e−2r2
2N∑
k=0

j≤[
k
2 ]

f cos
j,k Ψcos

j,k (
√

2re) + f sin
j,kΨsin

j,k(
√

2re). (26)

For this purpose – as already has been done for the Hermite polynomials – we scale the Laguerre poly-
nomials Ljn by a factor, such that ‖Ljn‖L2(R,e−v2 )

= 1, j = 1 · · · [k2 ]. For j = 0 and even n, the scaling

factor is chosen such that ‖L0
n‖L2,e−v2 = 1√

2
.

Now, formulating (26) in terms of a L2 orthogonal projection one ends up with (tested with a
Ψ

cos / sin
j0,k0

, k0 ≤ 2N basis function):

2N∑
k=0
j≤k

hk,j

∫
R2

e−2|v̂|Hk,j(
√

2v̂)Ψ
cos / sin
j0,k0

(
√

2re) dv̂

=
2N∑
k=0

j≤
[
k
2

]

∫
R2

e−2r2f cos
j,k Ψcos

j,k (
√

2re)Ψ
cos / sin
j0,k0

(
√

2re) + f sin
j,kΨsin

j,k(
√

2re)Ψ
cos / sin
j0,k0

(
√

2re) dv̂

(27)

Due to the orthogonality properties of the Polar Laguerre basis polynomials, (27) turns into

2N∑
k=0
j≤k

hk,j

∫
R2

e−2|v̂|Hk,j(
√

2v̂)Ψ
cos / sin
j0,k0

dv̂ =
π

4
f

cos / sin
j0,k0

(28)

The next step consists of splitting the sum on the left hand side of (28) into

k0−1∑
k=0
j≤k

hk,j

∫
R2

e−2|v̂|Hk,j(
√

2v̂)Ψ
cos / sin
j0,k0

(
√

2re) dv̂

︸ ︷︷ ︸
:=A

+
∑
k=k0
j≤k

hk,j

∫
R2

e−2|v̂|Hk,j(
√

2v̂)Ψ
cos / sin
j0,k0

(
√

2re) dv̂

︸ ︷︷ ︸
:=B

+
2N∑

k=k0+1
j≤k

hk,j

∫
R2

e−2|v̂|Hk,j(
√

2v̂)Ψ
cos / sin
j0,k0

(
√

2re) dv̂

︸ ︷︷ ︸
:=C

=
π

4
f

cos / sin
j0,k0

(29)

For an analysis of A, use

Hk,j(
√

2v) =

k0−1∑
u=0

v≤
[
u
2

]
ccos
v,uΨcos

v,u(
√

2v) + csin
v,uΨsin

v,u(
√

2v).

17



Plugging this into A, using the orthogonality properties of the Polar Laguerre basis, one finds A = 0.
For C we use

Ψ
cos / sin
j0,k0

(
√

2v) =

k0∑
u=0
v≤u

ccos / sin
u,v Hu,v(

√
2v)

Again as for A, the orthogonality properties of the Hermite polynomials yields C = 0. Thus, the
coefficients f cos / sin

k0,j
in the polar basis, corresponding to polynomial degree k0 depend only on the

coefficients in the hermite basis corresponding to the same order k0. Writing

f = H2P · h with f =



f cos
0,0

f cos
0,1

f sin
0,1
...

f cos
0,2N
...

f cos
N,2N

f sin
N,2N


and h =



h0,0

h0,1

h1,1
...

h0,2N

h1,2N
...

h2N,2N


,

one finds the following structure in the matrix H2P:

k = 0

k = 1

k = 2

k = 3

k = 4

k = 5

Figure 2: The transformation matrix H2P. The gray shaded blocks correspond to the none zero entries
of the matrix. Due to the above result, one finds this special structure, highlighting again, the fact that
coefficients corresponding to a specific order are only dependent on coefficients of the same order. The
size of the block for order k is (k + 1)× (k + 1).

For a fixed order k0, the corresponding block in the matrix H2P is given by (exemplary for even k0):
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H2Pk =
4

π



∫
R2

e−2|v|2Hk0,0(
√

2v)Ψcos
0,k0

∫
R2

e−2|v|2Hk0,1(
√

2v)Ψcos
0,k0

. . .
∫
R2

e−2|v|2Hk0,k0(
√

2v)Ψcos
0,k0∫

R2

e−2|v|2Hk0,0(
√

2v)Ψcos
1,k0

∫
R2

e−2|v|2Hk0,1(
√

2v)Ψcos
1,k0

. . .
∫
R2

e−2|v|2Hk0,k0(
√

2v)Ψcos
1,k0∫

R2

e−2|v|2Hk0,0(
√

2v)Ψsin
1,k0

∫
R2

e−2|v|2Hk0,1(
√

2v)Ψsin
1,k0

. . .
∫
R2

e−2|v|2Hk0,k0(
√

2v)Ψsin
1,k0

...∫
R2

e−2|v|2Hk0,0(
√

2v)Ψcos
k0
2 ,k0

∫
R2

e−2|v|2Hk0,1(
√

2v)Ψcos
k0
2 ,k0

. . .
∫
R2

e−2|v|2Hk0,k0(
√

2v)Ψcos
k0
2 ,k0∫

R2

e−2|v|2Hk0,0(
√

2v)Ψsin
k0
2 ,k0

∫
R2

e−2|v|2Hk0,1(
√

2v)Ψsin
k0
2 ,k0

. . .
∫
R2

e−2|v|2Hk0,k0(
√

2v)Ψsin
k0
2 ,k0


With the matrix H2P, it is also possible to count the floating point operations performed for the Hermite-
to-Polar transformation: For a fixed order k, the transformation can be written as a matrix · vector
multiplication with dimension k+ 1. Thus, (k+ 1)2 operations are performed for the transformation of
the k-th order, resulting in

∑2N
k=0(k + 1)2 = 2N(2N+1)(4N+1)

6 ≈ cN3 floating point operations for the
transformation.

Transformation of the test functions:
In the next step we consider the transformation of the test functions in the Hermite basis to the Polar-
Laguerre basis. There holds (exemplary for even k):


Hk,0(

√
2v)

Hk,1(
√

2v)
...

Hk,k(
√

2v)

 = H2PTk



Ψcos
0,k(
√

2v)

Ψcos
1,k(
√

2v)

Ψsin
1,k(
√

2v)
...

Ψcos
k
2 ,k

(
√

2v)

Ψsin
k
2 ,k

(
√

2v)


Thus, testing with the Polar-Laguerre basis functions can be transferred back to testing with the Hermite
polynomials.

3.3 Collision algorithm within N3 operations

Now, we denote by Ψj j = 0 . . . npolar the Polar-Laguerre basis functions. L(·) denotes the Lagrange
test polynomials in a matrix representation as it is natural for the transformations, thus L(·)m,n =
lm(·x)ln(·y).
By taking into account the already mentioned transformations, the collision operator can now be written
as:
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∫
R2

Q(f)φ(v) dv =

n
(2)
v∑
i=0

ĉi

∫
R2

e−|v̄|
2
S

v̄√
2

T ∫
R2

e−|v̂|
2

∫
S1

L̂i(
v̂√
2
)
[
L(e

′|v̂|√
2

)− L( v̂√
2
)
]
de′dv̂dv̄

= 2

npolar∑
j=0

fj

∫
R2

e−|v̄|
2
S

v̄√
2

T ∫
R2

e−|v̂|
2

∫
S1

Ψj(v̂) · N2HT · H2PT ·
[
Ψ(e′|v̂|)−Ψ(v̂)

]
· N2H de′dv̂dv̄

= 2

npolar∑
j=0

fj

∫
R2

e−|v̄|
2
S

v̄√
2

T

· N2HT · H2PT ·
∫
R2

e−|v̂|
2

∫
S1

Ψj(v̂)
[
Ψ(e′|v̂|)−Ψ(v̂)

]
de′dv̂

︸ ︷︷ ︸
:=Qpolar(f)(v̄)∈Rnpolar×npolar

· N2H dv̄

= 2

∫
R2

e−|v̄|
2
S

v̄√
2

T

· N2HT · H2PT ·Qpolar(f)(v̄) f̂ · N2H dv̄

Now, the integration with respect to v̄ is evaluated by a Gauss-Hermite quadrature rule. Thus, by using
the notation from the beginning, this results in:∫

R2

Q(f)φ(v) dv = 2

nip∑
ip=0

ωip,2S
xip,2√

2

T

· N2HT · H2PT ·Qpolar(f)(xip,2) f̂ · N2H

Each summand can be evaluated within O(N3) operations, thus the total effort is O(nipN
3).

Remark 9. To have better approximation properties, one can make use of the macroscopic unknown
quantities V and T , by expanding f via:

fT,V(v) = e−
|v−V|2
T

∑
m

cmLm(v−V√
T

)

In addition let
f0(v) := fT,V(

√
Tv + V) = e−|v|

2
∑
m

cmLm(v).

and also for the test functions let φT,V(v) = Lj(
v−V√
T

) and φ0 = Lj(v).
Then for the corresponding mass integrals one arrives with:∫

R2

fT,V(v)φT,V(v) dv = T

∫
R2

f0(v)φ0(v) dv

Similar, by making use of the transformations v =
√
T ṽ + V and w =

√
T w̃ + V, one finds

v′ =
√
T

(
ṽ + w̃

2
+ e′
|ṽ − w̃|

2

)
︸ ︷︷ ︸

=ṽ′

+V.

Therefore, for the entries of the collision operator there holds:∫
R2

Q(fT,V)φT,V(v) dv =

∫
R2

∫
R2

∫
S1

fT,V(v)fT,V(w)[φT,V(v′)− φT,V(v)] de′ dv dw

= T 2

∫
R2

∫
R2

∫
S1

f0(v)f0(w)[φ0(v′)− φ0(v)] de′ dv dw,

So both, mass and collision simply are scaled by a factor T resp. T 2.
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4 Basic properties

Moment conservation:
By making use of the basic collision invariants φ0(v) ≡ 1, φ1(v) = vx, φ2(v) = vy and φ3(v) = |v|2,
one arrives with the moment equations for the Boltzmann equation: There holds

∂

∂t

∫
R2

f

︸︷︷︸
:=ρ(t)

= 0

∂

∂t

1

ρ(t)

∫
R2

vf

︸ ︷︷ ︸
:=V(t)

= 0

∂

∂t

1

ρ(t)

∫
R2

|v −V|2f

︸ ︷︷ ︸
:=T (t)

= 0,

The quantities are the mean particle density, the mean bulk velocity and last but not least the mean
temperature, proportional to the mean energy of the gas. Within our discretization we also conserve
these quantities, what is simply a conclusion of having the basic collision invariant functions within the
test functions:

∂ρ

∂t
=

∂

∂t

∫
R2

f 1 =

∫
R2

Q(f) 1 dv =
∑

ip

ωip

∫
R+

r
[∫
S1

f (2)(re) de

∫
S1

1− 2π

∫
S1

f (2)(re)
]
dr = 0,

and thus the total mass is conserved over time. More over by using φ = vx/y one gets:

∂ (ρVi)

∂t
=

∂

∂t

∫
R2

f vi =

∫
R2

Q(f) vi dv =
∑

ip

ωip

∫
R+

r
[∫
S1

f (2)(re) de

∫
S1

rei − 2π

∫
S1

f (2)(re)rei

]
dr

Now, notice that the first part consisting of the factor
∫
S1 rei = 0 vanishes. For the second part notice

that g(r, e) = f (2)(re)rei) satisfies g(r, e) = −g(r,−e), and thus also
∫
S1 g(r, e) de = 0 and finally

∂ (ρVi)

∂t
= 0

is obtained. Since ρ(t) ≡ ρ0 this immediately yields ρ0
∂Vi
∂t = 0 resp.

∂V

∂t
= 0.

Now, we use |v −V|2 as a test function

∂ρT

∂t
=

∂

∂t

∫
R2

|v −V|2f =
∂

∂t

(∫
R2

|v|2f −
∫
R2

|V|2f
)

=

∫
R2

Q(f) |v|2 −
∫
R2

Q(f)|V|2 dv

︸ ︷︷ ︸
=0

=
∑

ip

ωip

∫
R+

r
[∫
S1

f (2)(re) de

∫
S1

r2 − 2π

∫
S1

f (2)(re)r2
]
dr = 0

to finally end up with conservation of energy resp. temperature.
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Remark 10. The conservation properties correspond to the fact, that the Boltzmann collision invariants
are also collision invariants within the discrete level.

H-theorem: For the Boltzmann collision operator exists the famous H-theorem, stating that∫
R2

Q(f) log(f) ≤ 0

holds for all suitable functions f > 0. This is usually done by using (13) (see [1] for instance). Basically
the same techniques are applicable to our reduced model of the collision integral and yield the following
result: ∫

R2

QN (f) log(f) ≤ 0

for all suitable f > 0.

5 Implementation remarks

An implementation of the proposed method requires some additional, careful treatment of the trans-
formations. It turns out, that in the presented form, the described transformation matrices are very ill
conditioned. To overcome this problem we reformulated the transformations in terms of the coefficients
d: Let

f(v) = e−|v|
2
nv∑
m=0

cm Lm(v),

then, the coefficients dj are given by dj := cje
−|v|2/2. Moreover, the Hermite polynomials hj have to

be replaced by the Hermite functions [10]:

hfj (v) = e−v
2/2hj(v),

where hfj denotes the Hermite functions.
In addition, the shift matrices have a better condition if the Lagrange polynomials of degree 2N are
defined via collocation nodes of the form ŷj,d :=

x̂j,d√
2

. Otherwise a calculation of the shifting matrices
would end up in the evaluation of the Lagrange polynomials of orderN outside of the initial collocation
points:

−10 −5 0 5 10

Figure 3: Upper line: Collocation nodes for order N (red) and scaled nodes of order 2N (blue).
Lower line: Collocation nodes for order N (red) and order 2N (blue).
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6 Numerical results

For this example, an initial distribution of the form

f0(v) =
1

2πT0
e
−

(
vx−d2

)2
+v2

y

T0 +
1

2πT0
e
−

(
vx+

d
2

)2
+v2

y

T0

was used. By moment conservation within the collision integrals, the temperature T∞ of the final gauss
distribution

f∞(v) =
1

πT∞
e
−|v|

2

T∞

is given by T∞ = d2

4 + T0. The distance of the initial peaks is given by d = 2, the initial temperature
of the peaks is T0 = 1

5 .
Referring to remark 9, f is expanded as

f = e
−|v|

2

T∞
∑
m

cmLm( v√
T∞

)

The following results were obtained by using 2500 degrees of freedom, corresponding to a polynomial
degree of 49 for both directions, and 3 integration points w.r.t. v̄ for each Cartesian direction. Time
integration was performed by a simple forward euler scheme:

Figure 4: Upper left: Initial distribution as described above. Upper right:The distribution immediately
after the simulation begin. The gain along the circle is due to mass, momentum and energy conservation
during the binary collisions and the specific shape of the initial values. Lower left: Gauss function as a
stationery solution. Lower right: Entropy over time.
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The above results were also obtained by using higher order integration rule w.r.t v̄. The figure shows
the entropy for different orders of these integration formulars:

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
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Time

E
nt
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py

∫ f ln(f)   −   Entropy over time

 

 

n
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n
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 = 7

n
ip

 = 11

entropy
∞

Figure 5: shows the entropies for differ-
ent orders of integration w.r.t v̄. The cho-
sen quadrature rules are of Gauss-Hermite
type. The number nip corresponds to the
number of integration points for each
Cartesian direction, thus the total integra-
tion points are given by n2

ip. As can be seen,
all entropies converge to the same station-
ary value, the curves for 11 resp. 15 points
are even hard to distinguish. Moreover, all
of them are bounded from below by the en-
tropy of the Gauss function with the same
mean density, velocity and energy.

The behavior of the L2-error ‖fnip − f∞‖L2 can be seen in the following figure. Here f∞ denotes a
reference solution and fnip is a solution obtained by using an integration formular of order nip for the v̄
integral. Moreover also the error in the corresponding entropy functionals is displayed. The calculation
of the ”exact” solution f∞ was also performed with the same formulation of the collision integral, but
with a much higher integration order of nip = 25.
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exp(−0.25 nip)

Figure 6: Left: shows the L2 norm of the error e := fnip − f∞. The black dotted line corresponds to
the function 1

t2
. Thus, we expect quadratic (w.r.t. to time ) convergence for the solution function itself.

Right: shows the∞ norm of the entropy error for different numbers of nip. For the entropy we expect
due to this result exponential convergence.
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A comparison of the performance of the reduced algorithm for the collision integral with the straight
forward discretization is presented in the next figure:
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Figure 7: shows a comparison of the CPU-times
for the different versions of the collision op-
erator: The blue curve corresponds to the time
consumed by the straight forward discretization
for 1000 applications. The green curve on the
other hand corresponds to the improved algo-
rithm (order 3 quadrature w.r.t. v̄). The blue
curve displays an O(N6) asymptotic, the green
one instead displays only anO(N3) asymptotic.
Within polynomial order 8, the optimized algo-
rithm is already faster than the straight forward
discretization.
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