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Abstract

Analytical properties of a nonlinear singular second order boundary
value problem in ordinary differential equations posed on an unbounded
domain for the density profile of the formation of microscopic bubbles in
a nonhomogeneous fluid are discussed. Especially, sufficient conditions
for the existence of solutions are derived. Two computational methods, a
shooting and a collocation method, are proposed for the numerical treat-
ment of the analytical problem. The results of numerical simulations are
presented and discussed.

Keywords: Singular boundary value problems, nonlinear ordinary differ-
ential equations, degenerate Laplacian, collocation methods, shooting methods.

1 Introduction

In this paper, we consider a second order nonlinear ordinary differential equation
arising in the modeling of non-homogeneous fluids. In the Cahn-Hilliard theory
for mixtures of fluids (see, for example, [5]) an additional term involving the
gradient of the density (grad(ρ)) is added to the classical expression E0(ρ) for
the volume free energy, depending on the density ρ of the medium. Hence the
total volume free energy of a non-homogeneous fluid ca be written as

E(ρ, grad(ρ)) = E0(ρ) +
σ

2
(grad(ρ))2, (1.1)

where E0(ρ) is a double-well potential, whose wells define the phases. The
potential E0(ρ) causes an interfacial layer within which the density ρ suffers
large variations [9].

Because of the shape of E0, the fluid tends to divide into two phases with
densities ρ = ρl (liquid) and ρ = ρv (vapour) and the term σ

2 (grad(ρ))2 tends
to turn the interface between them into a thin layer, endowing it with energy
(the surface tension) [26].
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When the free energy is given by (1.1) the density profile ρ(r) can be obtained
in the stationary case by means of minimization of the functional,

J(ρ) =

∫
Ω

(
E0(ρ) +

σ

2
(grad(ρ))2

)
dr, (1.2)

where Ω ⊂ RN . This minimization problem leads to a partial differential equa-
tion of the form

γ∇ρ = µ(ρ)− µ0, (1.3)

where µ(ρ) = dE0

dρ is the chemical potential of the considered mixture of fluids.
In the case of spherical symmetry, which is the most common in applications,
equation (1.3) can be reduced to a second order ordinary differential equation
of the form

r1−N (rN−1ρ′(r))′ = f(ρ(r)), r > 0, (1.4)

where N is the space dimension and f represents the right-hand side of (1.4).
This function is usually known and depends on the properties of the considered
mixture of fluids. Typically it is a cubic polynomial of ρ, with three real roots.
Choosing an adequate system of units, we may write f as

f(ρ) := 4λ2ρ(ρ+ 1)(ρ− ξ), (1.5)

where ξ = ρv (vapour density) and λ is a real parameter. Equation (1.4) is
called the density profile equation and was studied, for example in [6, 7]. The
authors of those articles show that the density profile (ρ) is a monotone solution
of equation (1.4) satisfying the boundary conditions,

ρ′(0) = 0, lim
r→∞

ρ(r) = ξ. (1.6)

In [14, 20, 21], a detailed study of the boundary value problem (1.4), (1.6)
has been provided. In [20, 21] the asymptotic properties of the solutions near
the singular points, 0 and ∞, have been studied. This enables approximate
representations of the solution for r → 0 and r →∞. Based on these represen-
tations, stable shooting methods were implemented for the numerical solution
of the problem. Moreover, in [14], accurate numerical results were obtained for
this problem, using the BVPSUITE code based on polynomial collocation.

In the present paper, we study a generalization of the problem (1.4), (1.6).
From the physical point of view, this more general situation arises when the
coefficient σ in (1.1) is not constant. Such a model was considered, for example,
in [13]. Here, the free volume energy takes a different form,

E(ρ, grad(ρ)) = E0(ρ) +
c

p
|grad(ρ)|p, (1.7)

where c and p > 1 are given constants1. Such models were analyzed in [24, 25].
Replacing expression (1.1) by (1.7) results in

cdiv(|grad(ρ)|p−2grad(ρ)) =
dE0

dρ
− d, d > 0. (1.8)

1For p = 2 and c = σ we obtain the simple case (1.1)
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The operator on the left-hand side of (1.8) is the so called p-Laplacian. More-
over, since here the case of spherical bubbles is considered, spherical symmetry
is used to reduce the dimension of the problem. The study of the more general
case, without spherical symmetry, can be found in [24, 25]. Using spherical
coordinates the following ordinary differential equation can be derived:

cr1−N (|ρ′(r)|p−2ρ′(r))′ = µ(ρ)− µ(ρl). (1.9)

Introducing the adequate system of units in (1.9) and denoting fp(ρ) :=
µ(ρ)− µ(ρl) yields then the following equation:

r1−N (rN−1|ρ′(r)|p−2ρ′(r))′ = fp(ρ), r > 0. (1.10)

The aim of this paper is to analyze the boundary value problem (1.10), (1.6)
and propose efficient numerical methods for its approximate solution.

The paper is organized as follows. In Section 2, we discuss existence of so-
lutions to the boundary value problem (1.10). In Section 3, a shooting method
based on the asymptotic properties of solutions and the numerical approxima-
tion obtained by a collocation method are introduced. Numerical results are
presented in Section 4 and conclusions can be found in Section 5.

2 Existence of Solutions to the Analytical Prob-
lem

As in the case p = 2, the existence analysis is based on the results provided in
[8]. In order to apply these results, we have to carry out in (1.10) the following
variable substitution:

ρ = ξ − u.
In the new variable equation (1.10) takes the form

r1−N (rN−1|u′(r)|p−2u′(r))′ + gp(u) = 0, r > 0, (2.1)

where
gp(u) = fp(ξ − u).

In this case boundary conditions (1.6) are replaced by

u′(0) = 0, lim
r→∞

u(r) = 0. (2.2)

Let us also introduce the notation

Fp(s) =

∫ s

0

gp(u)du. (2.3)

According to Theorem 1 in [8] the sufficient conditions for the existence of
a solution to the problem

r1−N (rN−1|u′(r)|p−2u′(r))′ + gp(u) = 0, r > 0, u′(0) = 0, lim
r→∞

u(r) = 0

(2.4)
are
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C1 gp is locally Lipschitz continuous on (0,∞) and absolutely integrable on
any interval [0, s]. Therefore Fp(s) exists for any s > 0 and Fp(0) = 0.

C2 There exists some β > 0 such that Fp(s) < 0 for 0 < s < β, Fp(β) = 0,
and gp(β) > 0.

C3 There exists some η > 0 such that gp(s) ≤ 0 for 0 < s ≤ η and∫ a

0

|Fp(s)|−1/pds =∞, (2.5)

for any positive a and p > 1.

C4 There exists some positive k0 such that

lim
s→γ−

sup
gp(s)

(γ − s)p−1
< k0, (2.6)

where γ is the least zero of gp greater than β.

We now define gp in such a way that these conditions are satisfied. First of all,
since gp must have the same roots and the same sign as g2(ρ) for any value of
p, we look for gp in the form

gp(u) = 2pλ2(u− ξ − 1)(ξ − u)u|u− ξ − 1|α|u|α, (2.7)

where p > 1 and α is an adjustable positive parameter2.
Since gp(0) = 0 and gp is differentiable at the origin, it follows from (2.3)

and (2.7) that Fp has a root of multiplicity larger or equal to two at the origin.
Moreover, this function has two real roots s1, s2, such that ξ < s1 < ξ+ 1 < s2,
see Figure 1 and Figure 2. Hence, Fp can be written in the form

Fp(s) = −λ2s2|s|αP (s), (2.8)

where λ is a constant and P is a smooth function such that P (0) 6= 0. This
means that P has roots only at s1 and s2. First of all, we note that due to (2.7),
gp satisfies the condition C1, for any nonnegative value of α. Moreover, as it
was pointed out in [21], for p = 2 and 0 < ξ < 1, condition C2 is satisfied with
β = s1, where s1 is the least positive root of F . The same holds for any p > 1
if α ≥ 0.

Concerning conditions C3 and C4, we have to choose proper values for α in
(2.7) and (2.8) in order to assure that also these conditions are satisfied. Let
us begin with condition C3. Due to the form of Fp given by (2.8), we conclude
that

|F (s)|−1/p = |λ|−2/p|s|−
α+2
p |P (s)|−

1
p .

Therefore, the integral (2.5) diverges if α ≥ p − 2 and converges if α < p − 2.
Hence, we choose α ≥ p−2 for the condition C3 to hold. Moreover, note that in

2In case p = 2, we set α = 0 and have f2 = f .
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Figure 1: Graphs of g and F for the case p = 2

our problem gp has a unique root greater than β, which is ξ+1. Hence, we have
γ = ξ + 1. Therefore, we see that the limit (2.6) is zero for α > p− 2, positive
for α = p− 2, and infinite for α < p− 2. We conclude that the condition C4 is
also satisfied for α ≥ p− 2.

Using results given in [8], we can guarantee that for gp of the form (2.7),
with α ≥ p − 2 and 0 < ξ < 1, there exists at least one monotone nontrivial
solution of the boundary value problem (2.4). We now consider the variable
ρ = ξ − u. In order to assure that the problem (1.10), (1.6) has at least one
solution, the function fp has to be of the form,

fp(ρ) = 2pλ2(ρ− ξ)(ρ+ 1)ρ|ρ− ξ|α|ρ+ 1|α, (2.9)

where ξ and α satisfy the above conditions. In the sequel, we choose α = p− 2
for p ≥ 2. The case p < 2 will not be considered in the present work. Therefore,
taking into account that −1 < ρ < ξ for p > 2, we can consider fp in the
simplified form

fp(ρ) = −2pλ2|ρ− ξ|p−1ρ(ρ+ 1)p−1. (2.10)

In Figure 1 the graphs of g and F are shown for p = 2. The graphs of gp
and Fp for p = 3, α = 1, are given in Figure 2.

3 Numerical Approximation

3.1 Shooting Method

In order to design a suitable shooting method it was necessary to accordingly
extend the algorithm described in [21]. The main idea is to replace the con-
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Figure 2: Graphs of gp and Fp for the case p = 3

sidered boundary value problem with two singularities, at the origin and at
infinity, by two auxiliary boundary value problems, each of them having only
one singularity. We now describe the method in more detail.

Step 1. We start by fixing the values of r0, δ, and r∞, in such a way
that r∞ > r0 > δ > 0. Here, r0 is an initial approximation to the root of the
solution, the so-called bubble radius, δ is close to zero and r∞ is large enough
for the asymptotical approximation of the solution at infinity, obtained in [?],
to be related to this point. Next, we subdivide the region [δ, r∞] in which the
approximate solution will be provided into two subintervals, [δ, r0] and [r0, r∞].
Let ρ−(r) be a monotone solution of (1.10) on [δ, r0] which satisfies the boundary
conditions

ρ− (δ) = ρ0 +
p− 1

p

(
fp(ρ0)

N

) 1
p−1

δ
p
p−1

(
1 + y1δ

p
p−1

)
, ρ−(r0) = 0. (3.1)

Analogously, let ρ+(r) be a monotone solution of (1.10) on [r0,∞) satisfying
the boundary conditions

ρ+(r0) = 0, ρ+(r∞) = ξ − bra∞C1(r∞)e−τr∞ . (3.2)

For more details on (3.1) and (3.2), especially on function C1 and constants y1,
a, b, and τ , which follow from asymptotic considerations, we refer the reader to
[22].
Finally, let us define

ρ(r) =

{
ρ−(r), if δ ≤ r ≤ r0,

ρ+(r), if r0 ≤ r ≤ r∞.
(3.3)
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Note that the functions ρ− and ρ+ are obtained by the standard shooting
method. This means that we first compute ρ0 such that ρ− is a solution of the
first, and b such that ρ+ is a solution of the second auxiliary problem. When
applying the shooting method we have to take into account that ρ0 in (3.1) has
to satisfy −1 < ρ0 < 0 and b in (3.2) has to be positive.

Step 2. In general, the function ρ(r) from (3.3) is not a solution of (1.10),
(1.6) on [0,∞[ because the condition

lim
r→r0−

ρ′(r) = lim
r→r0+

ρ′(r) (3.4)

is not satisfied for the given r0. Let us compute the difference

∆(r0) = lim
r→r0−

ρ′(r)− lim
r→r0+

ρ′(r). (3.5)

Our goal is now to find such a value r0 ∈ IR+ that ∆(r0) = 0. In order to find
the required value of r0 we use the secant method, starting from two values ra
and rb, such that ∆(ra) < 0 and ∆(rb) > 0 holds, respectively.

Step 3. In order to extend the approximate solution to the intervals [0, δ]
and [r∞,∞), we use the asymptotic expansions derived in [22]. In Section 4, we
shall present numerical results obtained from the algorithm described above.

The method has been implemented using Mathematica. This enables to
compute the approximations accurately within a reasonable computational time
for a large range of values of p and ξ. The advantage of the proposed approach
is that it makes use of the asymptotic solution properties near the singular
points. In the present implementation, the auxiliary problems for ρ− and ρ+

with boundary conditions (3.1) and (3.2), respectively, are solved using the
package NDSOLVE in Mathematica [27]. The drawback of this method is that
one can neither control the global error of the approximation nor the required
total computational effort. In Section 3.2, we describe a different approach to
the numerical solution of the problem (1.10), (1.6). This approach is based
on polynomial collocation and makes use of the recently developed Matlab
code bvpsuite, cf. [15], designed for the numerical solution of boundary value
problems in ordinary differential equations, posed on unbounded domains.

3.2 Collocation Method

The motivation for the development of the Matlab code bvpsuite [15] were
singular boundary value problems of the form

z′(t) =
M(t)

tα
z(t) + f(t, z(t)), t ∈ (0, 1], (3.6)

B0z(0) +B1z(1) = β, (3.7)

where α ≥ 1, z is an n-dimensional real function, M is a smooth n× n matrix
and f is an n-dimensional smooth function on a suitable domain. B0 and B1

are constant matrices which are subject to certain restrictions for a well-posed
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problem. (3.6) is said to feature a singularity of the first kind for α = 1, while
for α > 1 the problem has a singularity of the second kind, also commonly re-
ferred to as essential singularity. The analytical properties of the problem (3.6)
have been discussed in [10, 12], with a special focus on the most general bound-
ary conditions which guarantee well-posedness of the problem. To compute the
numerical solution of (3.6) we use polynomial collocation. Our decision to use
polynomial collocation was motivated by its advantageous convergence proper-
ties for (3.6), while in the presence of a singularity other high order methods
show order reductions and become inefficient. In [3, 11, 18] convergence results
for collocation applied to problems with a singularity of the first kind, α = 1,
were shown. The usual high-order superconvergence at the mesh points does not
hold in general for singular problems, however, the uniform superconvergence is
preserved (up to logarithmic factors), see [18] for details.

Motivated by these observations, we have implemented two MATLAB codes
for singular boundary value problems. For higher efficiency, we provide an
estimate of the global error and adaptive mesh selection. Transformation of
problems posed on semi-infinite intervals to [0, 1] makes the solution of such
problems also accessible by our methods. All these algorithmic components have
been integrated into two MATLAB codes. sbvp solves explicit first order ODEs
[1], while bvpsuite can be applied to arbitrary order problems also in implicit
formulation and differential algebraic equations [19]. Moreover, a pathfollowing
strategy extends the scope of the latter code [17].

3.2.1 Basic Solver in the Matlab Code bvpsuite

The code is designed to solve systems of differential equations of arbitrary mixed
order including zero3, subject to initial or boundary conditions,

F
(
t, p1, . . . , ps, z1(t), z′1(t), . . . , z

(l1)
1 (t), . . . , zn(t), z′n(t), . . . , z(ln)

n (t)
)

= 0,

B
(
p1, . . . , ps, z1(c1), . . . , z

(l1−1)
1 (c1), . . . , zn(c1), . . . , z(ln−1)

n (c1), . . . , (3.8)

z1(cq), . . . , z
(l1−1)
1 (cq), . . . , zn(cq), . . . , z

(ln−1)
n (cq)

)
= 0,

where the solution z(t) = (z1(t), z2(t), . . . , zn(t))T , and the parameters pi, i =
1, . . . , s, are unknown. In general, t ∈ [a, b],−∞ < a, b < ∞4. Moreover,
F : [a, b]× IRs× IRl1 × · · ·× IRln → IRn and B : Rs×Rql1 × · · ·×Rqln → Rl+s,
where l :=

∑n
i=1 li. Note that boundary conditions can be posed on any subset

of distinct points ci ∈ [a, b], with a ≤ c1 < c2 < · · · < cq ≤ b. For the numerical
treatment, we assume that the boundary value problem (3.8) is well-posed and
has a locally unique solution z.

In order to find a numerical solution of (3.8) we consider a mesh [τi, τi+1], i =
0, . . . , N−1, partitioning the interval [a, b]. Every subinterval [τi, τi+1] contains
m collocation points ti,j , j = 1, . . . ,m. Let Pm be the space of piecewise

3This means that differential-algebraic equations are also in the scope of the code.
4For the extension to unbounded domains, see Section 3.2.4.
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polynomial functions of degree ≤ m, which are globally continuous in [a, b]. In
every subinterval Ji we make an ansatz Pi,k ∈ Pm+lk−1 for the k-th solution
component zk, k = 1, . . . , n, of the problem (3.8). In order to compute the
coefficients in the ansatz functions we require that (3.8) is satisfied exactly at
the collocation points. Moreover we require that the collocation polynomial
p(t) := Pi(t), t ∈ Ji, is a globally continuous function on [a, b] with components
in Cli−1[a, b], i = 1, . . . , n, and that the boundary conditions hold. All these
conditions imply a nonlinear system of equations for the unknown coefficients
in the ansatz function. For more details see [16].

3.2.2 Error Estimates for the Global Error of the Collocation

To provide an asymptotically correct estimate for the global error of the col-
location solution we propose to use the classical error estimate based on mesh
halving. In this approach, we compute the collocation solution on a mesh ∆ :=
{τi, i = 0, . . . , N} with step sizes hi and denote this approximation by p∆(t).
Subsequently, we choose a second mesh ∆2 where in every interval of ∆ we
insert two subintervals of length hi/2. On this mesh, we compute the numerical
solution based on the same collocation scheme to obtain the collocating function
p∆2(t). Using these two quantities, we define E(t) := 2m(p∆2(t)−p∆(t))/(1−2m)
as an error estimate for the approximation p∆(t). Generally, estimates of the
global error based on mesh halving work well for both problems with a singu-
larity of the first kind and for essentially singular problems [2]. Since they are
also applicable to higher-order problems and problems in implicit form (as for
example DAEs) without the need for modifications, we have implemented this
strategy in our code bvpsuite.

3.2.3 Adaptive Mesh Selection

The mesh selection strategy implemented in bvpsuite was proposed and inves-
tigated in [23]. Most modern mesh generation techniques in two-point boundary
value problems construct a smooth function mapping a uniform auxiliary grid
to the desired nonuniform grid. In [23] a new system of control algorithms for
constructing a grid density function φ(t) is described. The local mesh width
hi = τi+1 − τi is computed as hi = εN/ϕi+1/2, where εN = 1/N is the accuracy
control parameter corresponding to N − 1 interior points, and the positive se-
quence Φ = {ϕi+1/2}N−1

i=0 is a discrete approximation to the continuous density
function φ(t), representing the mesh width variation. Using an error estimate,
a feedback control law generates a new density from the previous one. Digital
filters may be employed to process the error estimate as well as the density.

For boundary value problems, an adaptive algorithm must determine the
sequence Φ[ν] in terms of problem or solution properties. True adaptive ap-
proaches equidistribute some monitor function, a measure of the residual or
error estimate, over the interval. As Φ[ν] will depend on the error estimates,
which in turn depend on the distribution of the grid points, the process of find-
ing the density becomes iterative. For some error control criteria a local grid
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change typically has global effects. The techniques developed here avoid this
difficulty by restricting the error estimators to those having the property that
the estimated error on the interval [τi, τi+1] only depends on the local mesh
width, hi = εN/ϕi+1/2.

In order to be able to generate the mesh density function, we decided to use
the residual r(t) to define the monitor function. The values of r(t) are available
from the substitution of the collocation solution p(t) into the analytical problem
(3.8). In the grid adaptation routine implemented in the code mesh generation,
finding the optimal density function, is separated from mesh refinement, finding
the proper number of mesh points. We first try to provide a good density
function Φ on a rather coarse mesh with a fixed number of points M = 50.
The mesh density function is chosen to equidistribute the monitor function. For
each density profile in the above iteration, we then estimate the number of mesh
points necessary to reach the tolerance.

3.2.4 Semi-Infinite Intervals

Our code can also treat problems posed on semi-infinite intervals t ∈ (a,∞), a >
0 (and by a splitting of the interval, also a = 0). In order to exploit our efficient
and robust mesh selection strategy also in this case, we use the transformation
t = 1

τ , z(t) = x
(

1
τ

)
to restate x′(τ) = τβf(τ, x(τ)), τ ∈ [a,∞), β > −1 as the

problem z′(t) = −f(1/t, z(t))/tβ+2, t ∈ (0, 1/a]. This is in general a problem
with an essential singularity, which however is in the scope for our collocation
methods, error estimation procedure and adaptive mesh refinement. In this
approach, the mesh is adapted only according to the unsmoothness of the so-
lution without the need for mesh grading on long intervals, and moreover no
truncation of the unbounded interval is necessary. This strategy was employed
successfully for example in [4, 14].

3.2.5 Reformulation of the Original Problem for the Collocation
Method

We now solve the problem (1.10), (1.6) using the collocation method imple-
mented in bvpsuite. Here, the original differential equation is transformed to
a system of four implicit first order differential equations. The main idea is to
split the unbounded domain (0,∞) the original differential equation is posed
on, into (0, 1) and [1,∞).

For r ∈ (0, 1), we define the independent and dependent variables as t := r
and z1(t) := ρ(r), respectively. Let us introduce

z3(t) := |z′1(t)|p−2z′1(t). (3.9)

Then, for z3 ∈ C1(0, 1), it follows immediately from (1.10),

z′3(t) +
N − 1

t
z3(t) = fp(z1(t)). (3.10)
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For r ∈ [1,∞) the new variables are t := 1
r and z2(t) := ρ

(
1
r

)
. Note that

d
dr = d

dt (−t
2) and d

dt = d
dr

(
− 1
t2

)
.

Moreover,
dz2

dt
(t) =

dρ

dr
(r)

(
− 1

t2

)
. (3.11)

Using (3.11), we rewrite (1.10) and obtain

tN−1 d

dr

(
t1−N

∣∣∣∣dz2

dt
(t)(−t2)

∣∣∣∣p−2
dz2

dt
(t)(−t2)

)
= fp(z2(t)), t ∈ (0, 1). (3.12)

Introducing z4(t) :=
∣∣dz2
dt (t)

∣∣p−2 dz2
dt (t) and assuming z4 ∈ C1(0, 1], equation

(3.12) can be written in the following form:

tN−1 d

dr

(
−t2p−N−1z4(t)

)
= tN−1 d

dt

(
−t2p−N−1z4(t)

)
(−t2) = fp(z2(t)). (3.13)

This yields the following system of four implicit differential equations posed on
(0, 1],

(2p−N − 1)t2p−1z4(t) + t2pz′4(t) = fp(z2(t)), (3.14)

z4(t) = |z′2(t)|p−2
z′2(t), (3.15)

z′3(t) +
N − 1

t
z3(t) = fp(z1(t)), (3.16)

z3(t) = |z′1(t)|p−2z′1(t). (3.17)

For the above system four boundary conditions are required. From (1.6) we
have

z3(0) = 0, z2(0) = ξ.

Furthermore, both solution branches z1 and z2 shall match in t = 1 in such a
way that ρ ∈ C1(0,∞) holds. Consequently, again using (3.11), we require,

z1(1) = z2(1), z3(1) = −z4(1).

4 Numerical Results

In this section, we present numerical results obtained by the shooting and collo-
cation methods described above. The main purpose of the numerical simulation
is to test and compare the efficiency and robustness of the proposed algorithms.

We begin by presenting numerical results which show how the physical prop-
erties of the bubbles depend on p and ξ. Besides the bubble radius R and the
gas density at the center of the bubble, we will also calculate the numerical
values of the energy integral J defined by

J := J(ρ) :=

∫ ∞
0

(
ρ′(r)p

p
+Wp(ρ(r))

)
rN−1dr, (4.1)
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where

Wp(ρ) =

∫ ρ

0

gp(u)du. (4.2)

The solution of the boundary value problem can be viewed as the function ρ for
which the integral J is minimized.

In order to evaluate J , we use a numerical quadrature method. Keeping in
mind that we use a collocation method to solve (3.14)–(3.17), collocation points
could be used as mesh points in the involved quadrature rule. We now introduce
the partition ∆T of the interval of integration [0, 1],

∆T = {0 = τ0 < τ1, . . . , τj < τj+1, . . . , τN = 1, hj := τj+1 − τj}.

In each subinterval [τj , τj+1], we specify m collocation points tj,l, l = 1, 2, . . . ,m,
such that

τj < tj,1 < tj,2 < . . . < tj,m < τj+1,

cf. Section 3.2.1.
Let us denote by Pj,k(t) the collocation polynomial approximating zk(t) for

t ∈ [τj , τj+1], k = 1, . . . , 4, j = 0, 1, . . . , N − 1. Then, we can approximate the
values of the first derivative z′k(t) at the collocation points tj,l, j = 0, 1, . . . , N−1,
l = 1, 2, . . . ,m, directly from the definition of the collocation method. Since z1

is monotonically increasing, we conclude from (3.17),

z′1(t) = z3(t)
1
p−1 ,

and consequently,

P ′j,1(tj,l) = Pj,3(tj,l)
1
p−1 , j = 0, 1, . . . , N − 1, l = 1, 2, . . . ,m. (4.3)

For the second component we obtain a very similar relation. Due to (3.11), z2 is

monotonically decreasing, and thus from (3.15) it follows |z′2(t)| = z4(t) |z4(t)|
1
p−1

which together with |z′2| = −z′2 yields

(−P ′j,2(tj,l))
p = |Pj,4(tj,l)|

p
p−1 , j = 0, 1, . . . , N − 1, l = 1, 2, . . . ,m. (4.4)

Let us assume that a numerical quadrature rule is defined on the interval [0, 1]
via the weights {wl}l∈{1,...,n} and the evaluation points ξl ∈ [0, 1], l=1, . . . , n,∫ 1

0

f(t)dt ≈ Q[0,1](f) =
n∑
l=1

wlf(ξl).

In order to integrate over the interval [τj , τj+1] we have to recalculate the weights
and the evaluation points accordingly,∫ τj+1

τj

f(t)dt ≈ Q[τj ,τj+1](f) = hj

n∑
l=1

wlf((τj+1 − τj)ξl + τj).

12



We first rewrite J ,

J(ρ) =

∫ 1

0

(
1

p
ρ′(r)p +Wp(ρ(r))

)
rN−1 dr

+

∫ ∞
1

(
1

p
ρ′(r)p +Wp(ρ(r))

)
rN−1 dr

=

∫ 1

0

(
1

p
z′1(t)p +Wp(z1(t))

)
tN−1 dt

+

∫ 1

0

(
1

p

(−z′2(t))
p

tN+1+2p
+
Wp(z2(t))

tN+1

)
dt.

Choosing a Gaussian quadrature rule and the collocation scheme with m = n
and (τj+1 − τj)ξl + τj = tj,l enables to use (4.3) and (4.4). Thus, we obtain

J(ρ) ≈ Q[0,1]

((
1

p
z′1(t)p +Wp(z1(t))

)
tN−1 +

1

p

(−z′2(t))
p

tN+1+2p
+
Wp(z2(t))

tN+1

)
=

∑
j∈{0,1,...,N−1}

l∈{1...m}

wl

((
1

p
z′1(tj,l)

p +Wp(z1(tj,l))

)
tN−1
j,l

+
1

p

(−z′2(tj,l))
p

tN+1+2p
j,l

+
Wp(z2(tj,l))

tN+1
j,l

)

≈
∑

j∈{0,1,...,N−1}
l∈{1...m}

wl

(((
P ′j,1(tj,l)

)p
p

+Wp(Pj,1(tj,l))

)
tN−1
j,l

+

(
−P ′j,2(tj,l)

)p
p tN+1+2p
j,l

+
Wp(Pj,2(tj,l))

tN+1
j,i

)

=
∑

j∈{0,1,...,N−1}
l∈{1...m}

hjwl

((
Pj,3(tj,l)

p
p−1

p
+Wp(Pj,1(tj,l))

)
tN−1
j,l

+
|Pj,4(tj,l)|

p
p−1

p tN+1+2p
j,l

+
Wp(Pj,2(tj,l))

tN+1
j,l

)

Note that in the last sum only values of the solution at the collocation points
provided by bvpsuite occur and therefore the evaluation of J is straightfor-
ward.

In Tables 1, 2, and 3, we present the numerical values of J , R, and ρ0 for
p = 3, p = 3.5, and p = 4, respectively. We also give an error estimate for the
approximation of J . The results reported in the tables are provided for the case
N = 3 and ξ = 0.1, 0.2, . . . , 0.8. They were obtained using bvpsuite based on
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polynomial collocation. The application of the code is in no way straightforward
and it takes quite an effort to calculate the solution with reasonable accuracy.
The reason for the difficulties can be explained by the fact that the analytical
solution is unsmooth and that condition numbers of the involved linear systems
of equations arising during the Newton iteration become significant for h → 0.
This means that the starting values for the Newton procedure have to be very
accurate. Clearly, we can use the solution profiles obtained for a certain value
of ξ as a starting guess for the next value ξ+∆ξ, but for the Newton method to
work ∆ξ has to be small. Moreover, to recover correctly the solution behavior
in the region where its profile is very steep, very fine grids are necessary. This
results in high demand for computational recourses (storage and time).

ξ J errJ ρ0 R errsol
0.1 0.0008400 5.25e-08 -0.1553002 2.1128538 1.92e-05
0.2 0.0079429 4.69e-07 -0.3196202 1.8217471 3.45e-05
0.3 0.0324557 2.15e-06 -0.4899207 1.7632653 5.58e-05
0.4 0.0965061 8.96e-06 -0.6588715 1.8248666 8.77e-05
0.5 0.2497196 3.75e-05 -0.7650025 2.0303955 2.20e-04
0.6 0.6205862 2.17e-04 -0.9259004 2.3608133 7.87e-04
0.7 1.6241505 1.72e-03 -0.9850873 3.0318875 4.22e-03
0.8 5.1044359 2.75e-02 -0.9994747 4.4949907 4.29e-02

Table 1: Numerical results for p = 3.

ξ J errJ ρ0 R errsol
0.1 0.0001225 2.73e-09 -0.1253690 1.731092 1.04e-05
0.2 0.0018308 3.56e-08 -0.2622161 1.534213 1.58e-05
0.3 0.0097973 2.43e-07 -0.4104270 1.501617 2.22e-05
0.4 0.0352165 1.38e-06 -0.5677791 1.557476 3.77e-05
0.5 0.1050056 7.75e-06 -0.7265417 1.705349 7.27e-05
0.6 0.2916065 4.92e-05 -0.8679810 1.991735 2.93e-04
0.7 0.8328526 4.28e-04 -0.9630508 2.538646 1.74e-03
0.8 2.8107513 7.30e-03 -0.9973830 3.727937 1.90e-02

Table 2: Numerical results for p = 3.5.

In Table 4, we illustrate the convergence order of the collocation method
and the condition numbers of the matrices arising during the Newton iteration.
These results show clearly that the problem is ill-conditioned and a drop of the
convergence order can be observed, due to the unsmoothness of the solution at
the origin. In case of an appropriately smooth solution, the convergence order
would be two, but in the present case the second derivative of the solution is
unbounded as r → 0 for p > 0, cf.[22].

It is interesting to see that for a fixed value of ξ, the condition numbers
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ξ J errJ ρ0 R errsol
0.1 0.0000200 1.01e-10 -0.105231627 1.4527009 1.23e-05
0.2 0.0004610 1.30e-09 -0.222392833 1.3167929 1.63e-05
0.3 0.0031933 4.20e-09 -0.352719668 1.3023511 2.01e-05
0.4 0.0137922 1.29e-07 -0.496736196 1.3559939 2.84e-05
0.5 0.0473178 1.36e-06 -0.651939112 1.4827001 4.27e-05
0.6 0.1467129 1.18e-05 -0.806737348 1.7228001 7.21e-05
0.7 0.4575437 1.22e-04 -0.931945341 2.1819640 5.69e-04
0.8 1.6592987 2.31e-03 -0.992361016 3.1813922 8.53e-03

Table 3: Numerical results for p = 4.

of the matrices grow as p decreases, which can be explained by the fact that
for smaller p the interior layer of the solution near the bubble radius becomes
steeper. On the other hand, if we fix p, the condition numbers grow as ξ tend
to 1. This is well illustrated by the graphs of the solutions in Figure 3. Note
the special case p = 2 [14]: Here, although the interior layer is steeper when
compared with larger values of p, the accuracy of the results is satisfactory since
in this case the solution is smooth at the origin, see Figure 3.

h errz1 ord errz2 ord ρ0 R cond ord
2−3 7.57e-02 2.37 8.23e−02 2.45 -0.82852 2.15258 5.42e+06 -1.53
2−4 1.46e-02 2.07 1.51e−02 2.08 -0.77868 2.05249 1.57e+07 -0.03
2−5 3.50e-03 2.02 3.58e−03 2.02 -0.76821 2.03516 1.60e+07 -3.19
2−6 8.64e-04 2.00 8.84e−04 2.00 -0.76565 2.03124 1.46e+08 -2.88
2−7 2.15e-04 2.00 2.20e−04 2.00 -0.76500 2.03040 1.07e+09 -3.53
2−8 5.38e-05 2.00 5.50e−05 2.00 -0.76484 2.03013 1.24e+10 -3.90
2−9 1.35e-05 - 1.37e−05 - -0.76480 2.03006 1.85e+11 -4.19

Table 4: Numerical results for (p, ξ) = (3, 0.5). Here, errρ is an error estimate
for the absolute global error of the collocation solution, ord is an estimate of
the global convergence order, and cond is the matrix condition number.

Next we present results obtained by the shooting approach. In Table 5,
we show the values of the bubble radius R for different values of p and ξ. The
corresponding values of ρ0 can be found in Table 6. The values of the parameter
b are given in Table 7. In the computations by the shooting method we used
values of δ between δ = 0.001, for the smallest value of p and δ = 0.02, for
the largest value of p. The value of r∞ was set to 6. The values of b strongly
depend on the latter parameter. In the tables, for the entries denoted with (*)
no reliable results could be provided.

All computations were carried out with the Matlab precision of 16 digits.
However, due to the ill-posedness of the problem, in some cases, especially for
ξ close to 1, the results show no more than four correct digits. For the shooting
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Figure 3: Solution graphs, ρ(r), for different values of p.
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method the global error can be only estimated by comparing it to the results
obtained by collocation.

p 2.0 2.5 3.0 3.5 4.0
ξ =0.2 2.685 2.20455 1.82180 1.53429 (*)
ξ =0.3 2.582 2.11351 1.76328 1.50167 1.30245
ξ =0.4 2.721 2.19287 1.82478 1.55751 1.35611
ξ =0.5 3.068 2.43240 2.0062 1.70529 1.48283
ξ =0.6 3.696 2.88981 2.35947 1.99133 1.72289
ξ =0.7 4.833 3.73350 3.02514 2.53590 2.18120

Table 5: Approximations of R provided by the shooting method.

p 2.0 2.5 3.0 3.5 4.0
ξ =0.2 -0.5681 -0.40926 -0.31950 -0.26175 (*)
ξ =0.3 -0.7707 -0.60412 -0.489805 -0.409134 -0.350480
ξ =0.4 -0.90313 -0.77370 -0.65871 -0.56697 -0.494054
ξ =0.5 -0.97112 -0.89977 -0.81141 -0.72578 -0.649328
ξ =0.6 -0.99531 -0.97121 -0.92550 -0.86734 -0.804794
ξ =0.7 -0.99979 -0.99646 -0.98392 -0.96266 -0.930961

Table 6: Approximations of ρ0 provided by the shooting method.

p 2.0 2.5 3.0 3.5 4.0
ξ =0.2 9.857 0.89645 0.238773 0.095496 (*)
ξ =0.3 28.113 1.83466 0.430397 0.167707 0.08531
ξ =0.4 95.98 4.20671 0.838803 0.301533 0.14646
ξ = 0.5 491.92 12.3603 1.9232 0.605841 0.27182
ξ = 0.6 5080.9 57.632 6.14021 1.56118 0.61222
ξ = 0.7 207675 672.673 38.8392 6.88547 2.1355

Table 7: Numerical values of b provided by the shooting method.

We know from the previous results for p = 2, see [20, 21], that the bubble
radius increases for ξ → 0 and ξ → 1, reaching its minimal value for ξ ≈ 0.28.
According to Figure 4, similar behavior of the bubble radius is observed for
larger values of p. On the other hand, for all considered values of p, the density
ρ0 tends to −1 for ξ → 1, cf. Figure 5.
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Figure 4: The dependence of the bubble radius R on ξ, for p = 2 (bright gray),
p = 3 (black), and p = 4 (dark gray).

Figure 5: The dependence of ρ0 on ξ, for p = 2 (bright gray), p = 3 (black),
and p = 4 (dark gray).

18



5 Conclusions

A generalization of the density profile equation for nonhomogeneous fluids has
been analyzed. Here, the classical Laplacian was replaced by a degenerate one.
The right-hand side of the considered differential equation has been defined in
such a way that the boundary value problem under consideration has at least
one strictly monotone solution. Numerical simulations suggest that some of the
main properties of the solution known from the case p = 2, are also preserved
for other values of p, 2 < p < 4.

In the present implementation, the shooting method provides good approx-
imations for p ∈ [2, 4] and ξ ∈ [0.2, 0.7], except for p = 4, ξ = 0.2. For values of
ξ smaller than 0.2 or greater than 0.7, it is difficult to find the correct values of
the shooting parameter ρ0, because small changes of this parameter often result
in a blow-up or a nonmonotone solution.

For the collocation method, the p-Laplacian case is more difficult to handle
than the case p = 2. This follows from the fact that for p > 2 the second
and higher derivatives of the solution become unbounded at the origin which
makes the adaptive mesh selection inapplicable. Moreover, for values of p in the
range 2 < p < 3 the condition numbers of the matrices involved in the Newton
iteration become very large and consequently, numerical approximations become
less accurate. On the other hand, the collocation method shows a very good
performance for moderate values of ξ.

A different variant of the shooting method has been implemented in [22],
where the approximate solutions of the involved initial value problems were
obtained from a different solver. In the future, we plan to apply a smoothing
variable substitution, resulting in moderate higher solution derivatives near the
origin which in turn shall improve the performance of the collocation method.
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