Convergent geometric integrator for the Landau-Lifshitz-Gilbert equation in micromagnetics

Petra Goldenits, Dirk Praetorius, Dieter Suess
Most recent ASC Reports

18/2011 M. Aurada, M. Feischl, M. Karkulik, D. Praetorius
 A Posteriori Error Estimates for the Johnson-Nédélec FEM-BEM Coupling

17/2011 Michael Feischl, Marcus Page, Dirk Praetorius
 Convergence of adaptive FEM for elliptic obstacle problems

16/2011 Michael Feischl, Marcus Page, Dirk Praetorius
 Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data

15/2011 M. Huber, A. Pechstein and J. Schöberl
 Hybrid domain decomposition solvers for scalar and vectorial wave equation

14/2011 Ansgar Jüngel, José Luis López, Jesús Montejo-Gámez
 A new derivation of the quantum Navier-Stokes equations in the Wigner-Fokker-Planck approach

13/2011 Jens Markus Melenk, Barbara Wohlmuth
 Quasi-optimal approximation of surface based Lagrange multipliers in finite element methods

12/2011 Ansgar Jüngel, Mario Bukal, Daniel Matthes
 A multidimensional nonlinear sixth-order quantum diffusion equation

11/2011 Ansgar Jüngel, Ines Viktoria Stelzer
 Entropy structure of a cross-diffusion Tumor-Growth model

10/2011 JinMyong Kim
 Global estimates of fundamental solutions for higher-order Schrödinger equations

09/2011 Li Chen, Xiu-Qing Chen, Ansgar Jüngel
 Semiclassical Limit in a Simplified Quantum Energy-Transport Model for Semiconductors
Convergent geometric integrator for the Landau-Lifshitz-Gilbert equation in micromagnetics

Petra Goldenits1,\ast, Dirk Praetorius1, and Dieter Suess2

1 Institute for Analysis and Sci. Comp., Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
2 Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria

We consider a lowest-order finite element scheme for the Landau-Lifshitz-Gilbert equation (LLG) which describes the dynamics of micromagnetism. In contrast to previous works, we examine LLG with a total magnetic field which is induced by several physical phenomena described in terms of exchange energy, anisotropy energy, magnetostatic energy, and Zeeman energy. In our numerical scheme, the highest-order term which stems from the exchange energy, is treated implicitly, whereas the remaining energy contributions are computed explicitly. Therefore, only one sparse linear system has to be solved per time-step. The proposed scheme is unconditionally convergent to a global weak solution of LLG.

1 Introduction

In physics, the Landau-Lifshitz-Gilbert equation (LLG) is a well-accepted approach to model the dynamics of micromagnetism. Numerical simulations of LLG provide a fundamental insight into the understanding and development of magnetic materials which is of utter relevance e.g. in magneto-resistive storage devices.

The micromagnetic body is denoted by a polyhedral bounded Lipschitz domain $\Omega \subset \mathbb{R}^3$. The magnetic behavior of the micromagnetic body is characterized by the (unknown) magnetization $m : (0, \tau) \times \Omega \rightarrow S^2 = \{x \in \mathbb{R}^3 : |x| = 1\}$, where $(0, \tau)$ denotes the time interval. Then, LLG reads in non-dimensional form

\begin{align}
\dot{m}(t) &= -\frac{\alpha}{1+\alpha^2}m \times (m \times h_{\text{eff}}) - \frac{1}{1+\alpha^2}m \times h_{\text{eff}} \\
\left. m(0) \right|_{\Omega} &= m_0 \quad \text{in } H^1(\Omega; S^2), \quad \partial_n m = 0 \quad \text{on } (0, \tau) \times \partial \Omega, \tag{1}
\end{align}

with $\alpha > 0$ the Gilbert damping parameter which depends only on the material. As a consequence of (1), the magnetization satisfies a non-convex side constraint $|m| = 1$ a.e. in $\Omega_{\tau} := (0, \tau) \times \Omega$. Moreover, $h_{\text{eff}} = h_{\text{eff}}(m, f)$ indicates the total magnetic field and is given by the negative variation of the Gibbs free energy

\begin{equation}
h_{\text{eff}} = -\frac{\delta e(m)}{\delta m} \quad \text{with } e(m) = \int_{\Omega} |\nabla m|^2 dx + \int_{\Omega} \Phi(m) dx + \frac{1}{2} \int_{\mathbb{R}^3} |P(m)|^2 dx - \int_{\Omega} f \cdot m dx. \tag{3}
\end{equation}

Here, Φ refers to the anisotropy density, $P(m)$ is related to the demagnetization field which is induced by the magnetostatic Maxwell’s equations, and f denotes an applied field. The contributions of the bulk energy $e(m)$ are called exchange energy, anisotropy energy, stray-field energy, and Zeeman energy, respectively.

Supplemented by the same initial and boundary conditions (2), LLG (1) can equivalently be stated as

\begin{equation}
\alpha \dot{m} + m \times \dot{m} = h_{\text{eff}} - (m \cdot h_{\text{eff}}) m, \tag{4}
\end{equation}

cf. e.g. [4] for a detailed proof. This alternative formulation serves as basis for our FE scheme to solve LLG numerically, where we approximate $m_h \approx m$ and $v_h \approx m_t$. Note that, due to $|m| = 1$ a.e., the time derivative m_t belongs to the tangential space of m, i.e. $m \cdot m_t = 0$ a.e. in Ω_{τ}.

2 Numerical algorithm

Let $T_h = \{T_1, \ldots, T_n\}$ denote a quasi-uniform and regular triangulation of Ω into tetrahedra and $N_h = \{z_1, \ldots, z_N\}$ be the set of its nodes. To discretize the magnetization m in the spatial variable, we use the vector-valued Courant FE space $V_h = S^1(T_h)^3$ of piecewise linear and globally continuous functions. Let

\begin{equation}
M_h = \{ \phi_h \in V_h : |\phi_h(z)| = 1 \text{ for all } z \in N_h \} \tag{5}
\end{equation}

\ast Corresponding author: email Petra.Goldenits@tuwien.ac.at, phone ++43 1 58801-10164, fax ++43 1 58801-10196
be the restricted finite element set, where \(m_h^j \approx m(\tau_j) \) is sought due to the constraint \(|m| = 1\). Furthermore, let
\[
K_{\phi_h} = \{ \psi_h \in V_h : \psi_h(z) \cdot \phi_h(z) = 0 \text{ for all } z \in N_h \}
\] be the discrete tangential space associated with some \(\phi_h \in M_h \), where the discrete time derivative \(v_h^j \approx \frac{m_t(\tau_j)}{\tau} \) is sought.

To obtain a time-splitting scheme to solve LLG numerically, we follow the idea of [1], where the small particle limit \(h_{\text{eff}} = \Delta m \) is considered. Therefore, we proceed by setting \(v = m_t \) in (4) and by discretizing the weak form. The term of highest order, i.e. the exchange contribution, is treated implicitly by means of a \(\theta \)-scheme, whereas the remaining three terms of the effective magnetic field \(h_{\text{eff}} \) are computed explicitly.

Algorithm 2.1. Input: Initial data \(m_h^0 \in M_h \), damping parameter \(\alpha \), parameter \(0 < \theta \leq 1 \), counter \(j = 0 \).

(i) Find \(v_h^j \in K_{\phi_h} \), such that for all test functions \(\psi_h \in K_{\phi_h} \) it holds that
\[
\alpha \int_{\Omega} v_h^j \cdot \psi_h \, dx + \int_{\Omega} (m_h^j \times v_h^j) \cdot \psi_h \, dx = - \int_{\Omega} \nabla (m_h^j + \theta k v_h^j) \cdot \nabla \psi_h \, dx - \int_{\Omega} (\partial h(m_h^j) + \mathcal{P}_h(m_h^j) - f^j) \cdot \psi_h \, dx.
\] (7)

(ii) Set \(m_h^{j+1}(z) = \frac{m_h^j(z) + \theta k v_h^j(z)}{|m_h^j(z) + \theta k v_h^j(z)|} \) for all nodes \(z \in N_h \), increase counter \(j \mapsto j + 1 \), and go to (i).

Output: Sequence of functions \(v_h^j \in K_{\phi_h} \) as well as \(m_h^j \in M_h \) for \(j \geq 0 \).

According to the Lemma of Lax-Milgram, (7) admits a unique solution \(v_h^j \in K_{\phi_h} \). As a consequence of \(m_h^j(z) \cdot v_h^j(z) = 0 \), the discretized magnetization \(m_h^{j+1} \in M_h \) for \(j \geq 0 \) is thus well-defined. We stress that only one (sparse) linear system (7) has to be solved per time-step and that the non-convex side constraint \(|m| = 1\) is nodewise fulfilled.

Remark 2.2 The implementation of the non-local energy contribution, i.e. the magnetostatic potential \(\mathcal{P}(m) \), is related to the solution of a transmission problem in \(\mathbb{R}^3 \) and thus involves certain boundary integral operators. Therefore, the computation of the demagnetization field is the most time and memory consuming part in numerical simulations and has to be realized effectively. Comments on the numerical treatment of the magnetostatic potential \(\mathcal{P} \) are found in [5]. Therein, several approaches are considered and analyzed to conclude convergence including an approximate computation \(\mathcal{P}_h \) of this energy contribution.

3 Convergence result

The definition of a weak solution to LLG is stated in [4] and is based on the idea of [2]. To prove weak convergence to a global weak solution, the discrete solutions \(m_h^j \) and \(m_h^{j+1} \) are affinely interpolated in time. For all \(x \in \Omega \) and all times \(t \in [0, \tau] \) with \(j = \{0, \ldots, J-1\} \) and \(\ell = \{jk, (j+1)k\} \), we define \(m_{hk}(t,x) := \frac{t-jk}{k} m_h^{j+1}(x) + \frac{(j+1)k-t}{k} m_h^j(x) \). The following convergence theorem generalizes the result of [1], yields reliability of the proposed algorithm, and even proves existence of global weak solutions. A rigorous proof is given in [4]. We stress that no coupling of the time-step size \(k \) and space-mesh size \(h \) is imposed.

Theorem 3.1 Fix \(\theta \in (1/2, 1] \). Suppose that \(T_h \) is a family of regular triangulations with mesh-sizes \(h \searrow 0 \) such that all occurring dihedral angles are smaller than \(\pi/2 \). Assume that \(m_h^j \rightarrow m_0 \) in \(H^1(\Omega; \mathbb{R}^3) \) as \(h \searrow 0 \) and that the stray-field approximation \(\mathcal{P}_h \) satisfies
\[
\| \mathcal{P}_h m_h^j \|_{L^2(\Omega)} \leq C \| m_h^j \|_{L^2(\Omega)} \quad \text{as well as} \quad \| \mathcal{P} m - \mathcal{P}_h m \|_{L^2(\Omega_t)} \xrightarrow{h \rightarrow 0} 0
\] with some \(h \)-independent constant \(C > 0 \). Then, as \(h, k \searrow 0 \), the approximate magnetization \(m_{hk} \) admits a subsequence which converges weakly in \(H^1(\Omega_t; \mathbb{R}^3) \) to a weak solution \(m \) of LLG.

Acknowledgements The authors acknowledge support of the Viennese Science and Technology Fund (WWTF) through the research project MA09–029 Micromagnetic Simulation and Computational Design of Future Devices.

References