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Abstract

We investigate the numerical approximation of the semiconductor Boltzmann
transport equation using an expansion of the distribution function in spheri-
cal harmonics. A complexity analysis shows that traditional implementations
of higher order spherical harmonics expansions suffer from huge memory re-
quirements, especially for two and three dimensional devices. To overcome
these complexity limitations, a compressed matrix storage scheme using Kro-
necker products is proposed, which reduces the memory requirements for the
storage of the system matrix significantly. Furthermore, the total memory
requirements are asymptotically dominated only by the memory required for
the unknowns. We discuss the increased importance of the selection of an
appropriate linear solver and show that execution times for matrix-vector
multiplications using the compressed matrix scheme are even smaller than
those for an uncompressed system matrix. Numerical results demonstrate
the applicability of our method and confirm our theoretical results.
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1. Introduction

While in the early years of the semiconductor industry macroscopic mod-
els such as the drift-diffusion model or the hydrodynamic model have been
sufficient for device simulation, accurate simulations of modern nanoscale
devices require the use of more precise models. As long as quantum mechan-
ical effects in transport direction are not dominant, the microscopic electron
transport may be described by the Boltzmann Transport Equation (BTE),
which may be considered to be the most appropriate semi-classical descrip-
tion of electrons in a semiconductor.

A direct solution of the BTE has been pursued for several decades and
many ingenious techniques have been developed for this purpose. However,
direct solution approaches are limited by the high dimensionality of the prob-
lem: Three spatial dimensions and three momentum dimensions lead to a
six-dimensional problem already for stationary simulations, thus only coarse
grids can be used for direct solutions [1, 2]. Therefore, the most commonly
used technique is the non-deterministic Monte Carlo method, primarily be-
cause it is very flexible and allows one to incorporate modeling details such as
complicated band structures and scattering processes. The main disadvan-
tage of the Monte Carlo method is its computational cost, especially when
attempting to reduce the statistical noise in the low density tails of the dis-
tribution function [3, 4].

As an alternative to the stochastic Monte Carlo method and high-di-
mensional direct approaches, the deterministic spherical harmonics expansion
method of first order was introduced in the early 1990s for one-dimensional
devices [5, 6]. Later, the method has been extended to arbitrary expansion
order [3, 7] and two spatial dimensions [8, 9, 10, 11]. Furthermore, numerous
contributions from the physics point of view [12, 13, 14, 15, 16] and some
results from the mathematics point of view [17, 18, 19, 20, 21, 22] are avail-
able. However, there are only a few contributions on improvements of the
treatment of the discrete system of equations [23, 24].

The major challenge for SHE is the huge – but much smaller than other
direct methods – memory need reported already for two-dimensional devices
[25]. The reason is that the model contains an additional energy variable
leading to an increased set of space-energy grid points (x, ε) and spherical
expansion coefficients. In particular, for three-dimensional devices, this re-
quires the discretization in a four-dimensional (x, ε)-space with a tuple of
unknowns associated with each grid point, which is out of reach even for
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modern computers. In current implementations, most of the required mem-
ory is used for the storage of the global system matrix of size M ×M . In
this paper we propose a method to reduce the memory required by the sys-
tem matrix such that most of the memory is actually consumed by the M
unknowns of the system. On a machine with 8 Gigabytes of memory, this
allows us to store 109 unknowns, which is by two orders of magnitude higher
than the largest SHE simulations reported so far [25]. This method paves
the way for real spatial three-dimensional simulations.

This work is organized as follows: We briefly review the derivation of the
SHE equations in Sec. 2. In Sec. 3 we show that the unknown expansion
coefficients are only weakly coupled, which leads to a very sparse system
matrix for the discretized equations. The decoupling of spherical harmonics
expansion coefficient interactions from the underlying discretization is used
in the main section of this work (Sec. 4) to derive a matrix compression
scheme based on sums of Kronecker products, which reduces the memory
requirements for the system matrix considerably. Sec. 5 shows how non-
spherical bands can be incorporated into the matrix compression scheme,
while Sec. 6 deals with the inclusion of stabilization schemes. The selection
of appropriate linear solvers is discussed in Sec. 7. Numerical results are
given in Sec. 8, confirming our theoretical results. Finally, we conclude in
Sec. 9.

2. SHE of the BTE

We briefly sketch the equations resulting from a SHE of the BTE, follow-
ing the derivation given in more detail by Jungemann et. al. [26]. Here and
in the following, function arguments are suppressed whenever appropriate
to increase the readability of the equations. The electron distribution is de-
scribed by a distribution function f(x,k, t), where x ∈ R

3 is the position in
real space, k ∈ R

3 is the wave vector and t > 0 is the time. The distribution
function is assumed to fulfill the BTE

∂f

∂t
+ v · ∇xf +

1

~
F · ∇kf = Q{f} ,

where v = ∇kε/~ is the group velocity induced by the band energy ε(k)
(relative to its minimum) and F = −∇x(qψ+εb) is the effective force acting
on a particle with charge q = ±e (where e is the modulus of the electron
charge and the positive sign refers to holes and the negative one to electrons)
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induced by the quasi-static potential ψ and the band edge εb. The scattering
operator Q is assumed to be linear and given by

Q{f} =
Ωs

(2π)3

∫

s(x,k′,k)f(x,k′, t) − s(x,k,k′)f(x,k, t) dk ,

where Ωs denotes a sample volume. According to Fermi’s Golden Rule, the
scattering terms are assumed to be of the form

s(x,k′,k) =
1

Ωs

∑

η

cη(x,k
′,k)δ

(

ε(k) − ε(k′) ± ~ωη

)

,

where we have assumed for simplicity that the energy transfer ~ωη for each
scattering process η does not depend on the initial and final wave vector.

For reasons of numerical stability it is advantageous to define the gener-
alized distribution function [26]

g(x, ε, θ, ϕ, t) = 2Z(ε, θ, ϕ)f(x,k(ε, θ, ϕ), t) ,

where the generalized density of states Z for one spin direction is given by

Z(ε, θ, ϕ) =
|k|2

(2π)3

∂|k|

∂ε
.

In the following it is assumed that the mapping ε 7→ k is a bijection, other-
wise a spherical harmonics expansion can not be carried out on equi-energy
surfaces.

We expand the generalized distribution function into orthonormal and
real valued spherical harmonics Yl,m(θ, ϕ), and truncate after (L+1)2 terms:

g(x, ε, θ, ϕ, t) ≈

L
∑

l=0

l
∑

m=−l

gl,m(x, ε, t)Yl,m(θ, ϕ) . (1)

The expansion coefficients are obtained from the generalized distribution
function by the projections

gl,m(x, ε, t) =

∫

Yl,m(θ, ϕ)g(x, ε, θ, ϕ, t) dΩ

= 2

∫

Yl,m(θ, ϕ)Z(ε, θ, ϕ)f(x,k(ε, θ, ϕ), t) dΩ ,
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where the integration is carried out over the unit sphere, Ω is the solid angle
and dΩ = sin θdθdϕ. Equations for the coefficients gl,m are directly obtained
from a projection of the BTE, resulting in

∂gl,m

∂t
+
∂F · j l,m

∂ε
+ ∇x · jl,m − F · Γl,m = Ql,m{g} , (2)

where the generalized current density

jl,m(x, ε, t) =

∫

vgYl,m dΩ (3)

and the angular force coupling term

Γl,m(x, ε, t) =

∫

1

~|k|

(∂Yl,m

∂θ
eθ +

1

sin θ

∂Yl,m

∂ϕ
eϕ

)

g dΩ (4)

have been introduced, and eθ and eϕ denote the angular unit vectors. The
projection of the scattering operatorQl,m{g} is detailed below. We substitute
(1) into (3) and (4) and then substitute these into (2). Using Einstein’s
summation convention, we obtain the system of partial differential equations

∂gl,m

∂t
+
∂F · vl′,m′

l,m gl′,m′

∂ε
+ v

l′,m′

l,m · ∇xgl′,m′ − F · Γl′,m′

l,m gl′,m′ = Ql,m{g} (5)

for all l = 0, . . . , L, m = −l, . . . , l, where

v
l′,m′

l,m (ε) =

∫

vYl,mYl′,m′ dΩ , (6)

Γ
l′,m′

l,m (ε) =

∫

1

~|k|

(∂Yl,m

∂θ
eθ +

1

sin θ

∂Yl,m

∂ϕ
eϕ

)

Yl′,m′ dΩ . (7)

Prior to projection of the scattering operator, we split Q{f} = Qin{f}−
Qout{f}, where

Qin{f} =
Ωs

(2π)3

∫

s(x,k′,k)f(x,k′, t) dk′ ,

Qout{f} =
Ωs

(2π)3

∫

s(x,k,k′)f(x,k, t) dk .
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Under the assumption of velocity randomizing scattering rates [4], a spherical
harmonics projection leads to [26]

Qin
l,m(x, ε, t) =

∑

η

sl′,m′;in
l,m;η gl′,m′(x, ε∓ ~ωη, t) ,

sl′,m′;in
l,m;η (x, ε) =

1

Y0,0

Zl,m(ε)cη(x, ε± ~ωη, ε)δ0,l′δ0,m′ , (8)

and

Qout
l,m(x, ε, t) = sl′,m′;out

l,m gl′,m′(x, ε, t) ,

sl′,m′;out
l,m (x, ε) =

1

Y0,0

∑

η

Z0,0(ε∓ ~ωη)cη(x, ε, ε± ~ωη)δl,l′δm,m′ , (9)

where δ denotes the Kronecker delta, the upper and lower signs refer to
scattering to higher and lower energies respectively, and

Zl,m =

∫

Ω

Z(ε, θ, ϕ)Yl,m dΩ . (10)

Substitution of the projected scattering terms into (5) yields the full system
of partial differential equations

∂gl,m

∂t
+
∂F · vl′,m′

l,m gl′,m′

∂ε
+ v

l′,m′

l,m · ∇xgl′,m′ − F · Γl′,m′

l,m gl′,m′ =

=
∑

η

sl′,m′;in
l,m;η gl′,m′(x, ε∓ ~ωη, t) − sl′,m′;out

l,m gl′,m′(x, ε, t)
(11)

for all l = 0, . . . , L and m = −l, . . . , l.
In the case of several energy bands, a BTE has to be written for each

band and scattering rates between these subbands have to be given. In the
following we assume a single energy band only. This allows us to keep the
expressions simpler, but it does not imply that our approach is limited to a
single energy band only.

3. Sparse Coupling for Spherical Bands

The representation (11) obscures the physical interpretation of the indi-
vidual terms, but it exposes the full coupling structure. If all coupling coeffi-
cients v

l′,m′

l,m , Γ
l′,m′

l,m , sl′,m′;in
l,m;η and sl′,m′;out

l,m were multiples of the Kronecker delta
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δl,l′δm,m′ , all equations would be decoupled and could be solved individually.
Conversely, nonzero coupling coefficients for all quadruples (l,m, l′, m′) indi-
cate a tight coupling, which usually complicates the solution process. This is
in analogy to systems of linear equations: If the system matrix is diagonal,
the solution is found immediately, but if the matrix is dense, typically a lot
of computational effort is required to solve the system.

According to (8) and (9), the scattering coefficients sl′,m′;in
l,m;η and sl′,m′;out

l,m

vanish except for the case that l′ = m′ = 0 or l = l′, m = m′, respectively.
This leads to a very weak coupling: The first term couples all differential
equations with g0,0, while the second term does not couple any equations
at all. Moreover, under the assumption of spherical bands, the generalized
density of states is spherically symmetric, hence Zl,m ≡ 0 for (l,m) 6= (0, 0).
Consequently, in this case, the scattering terms do not couple any unknowns.
The remainder of this section is thus devoted to the investigation of the
couplings induced by v

l′,m′

l,m and Γ
l′,m′

l,m (see (6) and (7)).
For general band structures, the symmetry of the underlying processes

leads to the following result.

Theorem 1 (Jungemann et. al.). For a spherical harmonics expansion up

to order L = 2I + 1 with I ∈ N, there holds for all i, i′ ∈ {0, . . . , I}, m ∈
{−i, . . . , i} and m′ ∈ {−i′, . . . , i′}

v
2i′,m′

2i,m = v
2i′+1,m′

2i+1,m = 0, Γ
2i′,m′

2i,m = Γ
2i′+1,m′

2i+1,m = 0 .

The essence of this theorem is that all nonzero coupling coefficients pos-
sess different parities in the leading indices. This minor structural informa-
tion about the coupling was already used for a preprocessing step for the
solution of the discretized equations in [26].

Under the assumption of spherical energy bands, i.e. ε(k) = ε̃(|k|), the
velocity v, the modulus of the wave vector |k| and the generalized density of
states only depend on the energy ε, but not on the angles θ, ϕ. Consequently,
we rewrite

v
l′,m′

l,m (ε) = v(ε)

∫

Yl,meεYl′,m′ dΩ =: v(ε)al′,m′

l,m , (12)

Γ
l′,m′

l,m (ε) =
1

~|k|

∫

(∂Yl,m

∂θ
eθ +

1

sin θ

∂Yl,m

∂ϕ
eϕ

)

Yl′,m′ dΩ =:
1

~|k|
b

l′,m′

l,m . (13)

The coupling between index pairs (l,m) and (l′, m′) is determined by the

integral terms a
l′,m′

l,m and b
l′,m′

l,m only. It turns out that the coupling is rather
weak:
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Theorem 2. For spherical energy bands, the following holds true for indices

l, l′ ∈ {0, . . . , L}, m ∈ {−l, . . . , l} and m′ ∈ {−l′, . . . , l′}:

1. If v
l′,m′

l,m is nonzero, then l ∈ {l′ ± 1} and m ∈ {±|m′| ± 1, m′}.

2. If Γ
l′,m′

l,m is nonzero, then l ∈ {l′ ± 1} and m ∈ {±|m′| ± 1, m′}.

The proof is given in Appendix B; it makes use of recurrence relations and
orthogonalities of trigonometric functions and associated Legendre functions.
Theorem 2 is very important for large order expansions: The total number
of unknown expansion coefficients is (L + 1)2, but according to (8), (9) and
(11), each gl,m is directly coupled with at most ten other coefficients. The
weak coupling stated in Theorem 2 has already been observed for less general
situations in earlier publications [3, 9].

4. Matrix Compression

In this section we investigate the discretization of the projected SHE
system (11) for spherical energy bands. Substitution of (12) and (13) into
(11) yields

∂gl,m

∂t
+ a

l′,m′

l,m ·
[

F
∂vgl′,m′

∂ε
+ v∇xgl′,m′

]

− b
l′,m′

l,m · F
gl′,m′

~|k|

=
∑

η

sl′,m′;in
l,m;η gl′,m′(x, ε∓ ~ωη, t) − sl′,m′;out

l,m gl′,m′ . (14)

Let us consider a spatial discretization for gl,m in the (x, ε) plane using a
finite element or finite volume scheme: We select a space of trial functions
U with basis (ϕi)

N
i=1 and a space of test functions V with basis (χj)

N
j=1,

making the usual assumption of equal dimensionality of the two spaces. The
particular choice of these spaces depends on the particular finite element or
finite volume scheme, but it does not affect the next steps. Moreover, a
compression scheme for finite difference methods is obtained analogously by
taking suitable limits in the choice of basis functions in the distributional
sense.

A weak form of (14) is derived as usual by multiplication with a test
function and integration over the whole domain. We make the ansatz

gl,m =

N
∑

i=1

αi;l,m(t)ϕi(x, ε) ,
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so that we have to solve for the N × (L + 1)2 unknowns αi;l,m(t). For the
numbering of the unknowns, we introduce the mapping

πL : N × {0, . . . , L} × {−L, . . . , L} → N ,

(i, l,m) 7→ i(L+ 1)2 + l2 + l +m ,
(15)

which is a bijection for −l ≤ m ≤ l. Also other mappings of the form
(i, l,m) 7→ i(L + 1)2 + κ(l,m) for a bijection κ from admissible values for
l,m into the set {0, . . . , (L + 1)2 − 1} can be used. In the following, we set
κ(l,m) = l2 + l +m.

Similar to finite element and finite volume methods, we define the matrix
valued bilinear mapping w : U × V → R

(L+1)2×(L+1)2 by

(

w(ϕ, χ)
)

κ(l,m),κ(l′,m′)
=

∫
[

∂ϕ

∂t
δl,l′δm,m′ +

∑

l′,m′

a
l′,m′

l,m ·
(

F
∂vϕ

∂ε
+ v∇xϕ

)

,

−
∑

l′,m′

b
l′,m′

l,m · F
ϕ

~|k|
+

∑

l′,m′

sl′,m′;out
l,m ϕ (16)

−
∑

l′,m′;η

sl′,m′;in
l,m;η ϕ(x, ε∓ ~ωη, t)

]

χ dxdε ,

where the integration is carried out over the simulation domain. Depending
on the actual discretization method, the integral terms may be rearranged
using integration by parts, but this does not affect the following arguments.
In the above definition of the bilinear mapping, the time derivative may be
discretized by a backward Euler scheme or omitted when considering steady
states.

With the numbering (15), the system matrix for the discrete system is
given by

S =











w(ϕ1, χ1) w(ϕ2, χ1) . . . w(ϕN , χ1)
w(ϕ1, χ2) w(ϕ2, χ2) . . . w(ϕN , χ2)

...
...

. . .
...

w(ϕ1, χN) w(ϕ2, χN) . . . w(ϕN , χN)











, (17)

which is the common matrix structure for Galerkin methods such as the
finite element method. Moreover, the sparsity of S becomes now apparent:
If the intersection of the support of ϕi and χj is empty (taking into account
shifts by ±~ωη along the energy axis coming from the scattering operator),
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the full block w(ϕi, χj) vanishes, see (16). Note that, in general, w(ϕi, χj) 6=
w(ϕj , χi) and therefore S is not symmetric, which must be taken into account
for the selection of a proper linear solver.

For the complexity analysis, we introduce the following notation.

Definition 1. Given a triangulation T and trial and test spaces U , V with

basis (ϕ)N
i=1 and (χ)N

j=1, respectively, we define the sparsity indicator

Csparse := max
χ∈{χ1,...,χN}

∣

∣

∣

{

ϕ ∈ {ϕ1, . . . , ϕN}
∣

∣ ∃(x, ε) ∈ G :

ϕχ 6= 0 or ∃η : ϕ(x, ε± ~ωη)χ 6= 0
}∣

∣

∣
,

where the notation |A| denotes the number of elements of the set A and G is

the simulation domain in the (x, ε)-space.

From the definition of Csparse we directly see that there are at most Csparse

blocks in each row of the block structure (17) of the system matrix S. In
the following we assume that the triangulations are sufficiently regular such
that Csparse does not increase when the mesh is refined. With Landau’s
notation, we assume that Csparse = O(1). This allows us to show the following
statement about memory requirements.

Theorem 3. Assume spherical energy bands, a spherical harmonics expan-

sion up to degree L and a discretization of the (x, ε)-domain using N degrees

of freedom. Then it holds:

1. A straightforward assembly of the matrix S, defined in (17), needs a

storage of CsparseN(L+ 1)4 entries.

2. There exists an assembly of S needing a storage of 11CsparseN (L+1)2

entries only.

Proof. The matrix S is of size N(L + 1)2 × N(L + 1)2. In each of the N
rows of the block structure (17) there are at most Csparse blocks. Each block
is of dimension (L+ 1)2 × (L+ 1)2, hence there are at most CsparseN(L+ 1)4

nonzero entries in S, which proves the first statement.
Since each block in the block structure is sparse due to Thm. 2, (8) and

(9), each block carries at most 11(L+ 1)2 nonzero entries, thus there are in
fact at most 11CsparseN(L+ 1)2 nonzero entries in S.
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It has been observed in [26] that the expansion order L should be at
least nine in order to obtain good agreement with Monte Carlo simulations.
Taking L = 9 for demonstration purposes, we see that a straightforward
assembly leads to 10,000CsparseN entries, whereas the number of nonzero
entries is at most 1,100CsparseN entries, thus more than 90 percent of the
memory is wasted in a straightforward assembly.

Even though a careful assembly reduces the required memory by an or-
der of magnitude, total memory requirements of at most 11CsparseN(L+ 1)2

entries are still very large. Compared to a linear finite element or finite vol-
ume scheme for the Poisson equation, the coupling between the expansion
coefficients in the SHE equations requires an additional factor of 11(L+ 1)2

to the storage need. Since L ≥ 9, we have to take into account an additional
factor of at least 1100. This leads to huge memory requirements for two-
dimensional devices and makes the simulation of three-dimensional devices
using the SHE model impossible so far. In the following, we derive a matrix
compression scheme that requires much less memory.

Writing a
l′,m′

l,m , Γ
l′,m′

l,m and F (x) in components,

a
l′,m′

l,m =







(al′,m′

l,m )1

(al′,m′

l,m )2

(al′,m′

l,m )3






, bl,m,l′,m′ =







(bl′,m′

l,m )1

(bl′,m′

l,m )2

(bl′,m′

l,m )3






, F (x) =





F 1(x)
F 2(x)
F 3(x)



 ,

a rearrangement of (16) leads to the following nine integrals
(

w(ϕ, χ)
)

κ(l′,m′),κ(l,m)
= δl,l′δm,m′

∫

∂ϕ

∂t
χ dxdε

+
∑

l′,m′

∫

sl′,m′;out
l,m ϕχ dxdε

−
∑

l′,m′,η

∫

sl′,m′;in
l,m;η ϕ(x, ε∓ ~ωη, t)χ dxdε

+
3

∑

p=1

∑

l′,m′

(al′,m′

l,m )p

∫

(

F p
∂vϕ

∂ε
+ v

∂ϕ

∂(x)p

)

χ dxdε

−

3
∑

p=1

∑

l′,m′

(bl′,m′

l,m )p

∫

F p
ϕ

~|k|
χ dxdε . (18)

The crucial observation is that after substitution of (8) and (9) into (18), all
summands are products in which one factor only depends on l, m, l′ and m′,
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and the other factor involves the integrals and depends only on the indices
of ϕj and χi. In particular, the full system matrix (17) can be written as

S =
9

∑

i=1

Qi ⊗ Ri , (19)

where ⊗ denotes the Kronecker product (cf. Appendix A for the definition).
The spatial discretization matrices Q1, . . . ,Q9 are given by

(Q1)i,j =

∫

∂ϕj

∂t
χi dxdε , (20)

(Q2)i,j =
1

Y0,0

∫

Z0,0(ε∓ ~ωη)cη(ε, ε± ~ωη)ϕjχi dxdε , (21)

(Q3)i,j = −
1

Y0,0

∫

Z0,0cη(ε± ~ωη, ε)ϕj(x, ε± ~ωη, t)χi dxdε , (22)

(Qp)i,j =

∫

[

F p−1
∂vϕj

∂ε
+ v

∂ϕj

∂xp−1

]

χi dxdε, p = 4, 5, 6 , (23)

(Qp)i,j = −

∫

F p−4
ϕj

~|k|
χi dxdε , p = 7, 8, 9 , (24)

and the coupling matrices R1, . . . ,R9 by

(

R1

)

κ(l,m),κ(l′,m′)
= δl,l′δm,m′ , (25)

(

R2

)

κ(l,m),κ(l′,m′)
= δl,l′δm,m′ , (26)

(

R3

)

κ(l,m),κ(l′,m′)
= δl,l′δm,m′δl,0δm,0 , (27)

(

Rp

)

κ(l,m),κ(l′,m′)
= (al′,m′

l,m )p−3 , p = 4, 5, 6 , (28)
(

Rp

)

κ(l,m),κ(l′,m′)
= (bl′,m′

l,m )p−6 , p = 7, 8, 9 . (29)

Hence, we can represent the full system matrix S, which has up to 11CsparseN
(L+1)2 nonzero entries, by nine matrices Q1, . . . ,Q9 (with at most CsparseN
entries each) and nine matrices R1, . . . ,R9 (with at most 4(L + 1)2 entries

each due to the fact that for given (l,m), each component of a
l′,m′

l,m and a
l′,m′

l,m

couples with at most four other pairs (l′, m′)). Since the matrices R1, R2

and R3 do not need to be stored at all, we can store S in a compressed
form using 24(L + 1)2 + 9CsparseN entries only. As (L + 1)2 is for two- and
three-dimensional devices typically much smaller than the degree of freedom

12



N , the total memory requirements for S can be reduced down to the order
9CsparseN = O(N). This leads to the situation that the number of unknowns
N(L + 1)2 is the only limitation with respect to memory for large order
expansions. Even in the case of very high order expansions such as L = 19
we can still use 312,500 grid nodes in (x, ε)-space in order to fit all unknowns
into one gigabyte of memory in double precision.

5. Non-spherical bands

The matrix compression described in the previous section relies on the fac-
torizations (12) and (13) of the coupling terms v

l′,m′

l,m (ε) and Γ
l′,m′

l,m (ε), whose
factors depend on the energy or on the indices l, m, l′ and m′. In the case of
non-spherical bands, the velocity and the modulus of the wave vector depend
on the energy and on the angles.

In order to decouple the radial (energy) contributions from the angular
ones, we perform a spherical projection up to order L′ of the coupled terms
in the integrands by approximating

v(ε, θ, ϕ) ≈
L′

∑

l′′=0

l′′
∑

m′′=−l′′

vl′′,m′′

(ε)Yl′′,m′′(θ, ϕ) , (30)

1

~|k(ε, θ, ϕ)|
≈

L′

∑

l′′=0

l′′
∑

m′′=−l′′

Γl′′,m′′

(ε)Yl′′,m′′(θ, ϕ) , (31)

where the expansion coefficients are given by

vl′′,m′′

(ε) =

∫

v(ε, θ, ϕ)Yl′′,m′′(θ, ϕ) dΩ ,

Γl′′,m′′

(ε) =

∫

1

~|k(ε, θ, ϕ)|
Yl′′,m′′(θ, ϕ) dΩ .

For simplicity, the expansion order L′ is the same for both v
l′,m′

l,m and Γ
l′,m′

l,m .
It depends on the complexity of the band structure, but values of L′ = 1 or
L′ = 2 should usually be sufficient to obtain a good approximation of the
non-spherical bands of interest.
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Substitution of the expansions (30) and (31) into (6) and (7) yields

v
l′,m′

l,m = vl′′,m′′

(ε)

∫

Yl,mYl′,m′Yl′′,m′′ dΩ =: vl′′,m′′

(ε)al′,m′

l,m;l′′,m′′ ,

Γ
l′,m′

l,m = Γl′′,m′′

(ε)

∫

(∂Yl,m

∂θ
eθ +

1

sin θ

∂Yl,m

∂ϕ
eϕ

)

Yl′,m′Yl′′,m′′ dΩ

=: Γl′′,m′′

(ε)bl′,m′

l,m;l′′,m′′ ,

so that we have to deal with a sum of (L′ + 1)2 decoupled terms in contrast
to the case of spherical bands, where the sum degenerates to a single term.
Repeating the steps from the previous section, the system matrix S can be
written similar to (19) in the form

S =

3+6(L′+1)2
∑

i=1

Qi ⊗ Ri . (32)

Some of the coupling matrices R4, . . . ,R3+6(L′+1)2 are sparse: If l′′ = m′′ = 0,
Yl′′,m′′ is a constant and the sparsity is assured by Thm. 2. For coupling

matrices involving al′,m′

l,m;l′′,m′′ , with row indices κ(l,m) and column indices
κ(l′, m′) for each pair (l′′, m′′), the entries are directly obtained from the
Wigner 3jm-symbols, cf. Appendix Appendix C. The sparsity of the coupling
matrices, arising from b

l′,m′

l,m;l′′,m′′ in the same way as for al′,m′

l,m;l′′,m′′ , is not clear at
present, but we presume that the structure is similar. Since the total memory
required for the coupling matrices induced by b

l′,m′

l,m;l′′,m′′ is still negligible even
if they are dense, we assume for simplicity dense spherical harmonics coupling
matrices, so (L + 1)4 memory is required for each. With this, the system
matrix can be stored using at most [3 + 6(L′ + 1)2][(L + 1)4 + CsparseN ] =
O(L′2(L4 +N)) matrix entries. In typical applications, L′ ≪ L and L4 ≪ N ,
so the total memory requirement is still dominated by the storage of the NL2

unknowns.

6. Stabilization Schemes

Due to the strong gradients in the distribution function and the large nu-
merical range of values, spurious oscillations in the numerical approximation
show up if no stabilization scheme is applied [3, 26]. For very small devices,
a combination of staggered grids, the maximum entropy dissipation scheme
(MEDS) [20] and the H-transform [8] was reported by Hong et. al. [25] to
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yield stable numerical results. In the following we extend our matrix com-
pression scheme such that it can be used with these stabilization schemes.

For staggered grids, unknowns associated with spherical harmonics of
even order are associated with different basis than unknowns associated with
odd order spherical harmonics. Consequently, for the even order unknowns
we select a space of trial functions U even with basis (ϕeven

i )N
i=1 and a space

of test functions V even with basis (χeven
j )N

j=1. Similarly, a space of trial func-
tions Uodd with basis (ϕodd

i )N
i=1 and a space of test functions V odd with basis

(χodd
j )N

j=1 is chosen for the odd order harmonics. The total trial space is
U = U even ∪ Uodd and the test space V = V even ∪ V odd.

Moreover, we first enumerate the even order unknowns and test functions
and then the odd order unknowns and test functions. Unknowns associated
with the same trial function carry are enumerated consecutivly similar to
(15). Repeating the steps in Sec. 4, the full system matrix S can be written
in the block-structure

S =

(

See Seo

Soe Soo

)

=

p
∑

i=1

(

Qee
i ⊗ Ree

i Qeo
i ⊗ Reo

i

Qoe
i ⊗ Roe

i Qoo
i ⊗ Roo

i

)

. (33)

The even-to-even coupling matrix See and the odd-to-odd coupling matrix
Soo are square matrices and determined according to Thm. 1 or Thm. 2
only by the projected time derivative ∂gl,m/∂t and the projected scattering
operator Ql,m{g}. The even-to-odd coupling matrix Seo is non-square and
determined by the free-streaming operator with sparsity pattern given by
Thm. 2. The odd-to-even coupling matrix Soe is also non-square and de-
termined by the free-streaming operator and for non-spherical bands also by
the scattering operator Ql,m{g}, cf. (8).

The spatial matrices Qee
i , Qeo

i , Qeo
i and Qoo

i in (33) are obtained by
evaluating the underlying bilinear mapping for trial functions from U even

and Uodd and test functions from V even and V odd respectively. Similarly, the
spherical coupling matrices Ree

i , Reo
i , Reo

i and Roo
i are obtained by taking

only the rows and columns of Ri that correspond to even or odd harmonics
respectively.

Since the coupling structure of the scattering operator is explicitly given
in (8) and (9), the structure of See and Soo is as follows:

Theorem 4. For spherical harmonics expansions in steady state, the follow-

ing statements for staggered grids hold true:
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1. The matrix Soo is diagonal.

2. For spherical energy bands without considering inelastic scattering, See

is also diagonal.

This structural information is very important for the construction of so-
lution schemes in the next section.

To employ the H-transform, variables are changed from (x, ε) to (x̃, H)
by the transformation

x̃ = x , H = ε+ qψ(x) ,

where ψ denotes the electrostatic potential and q is the charge of the car-
riers (negative for electrons, positive for holes). Since this transformation
effects only the (x, ε)-space, the decouplings (12) and (13) are unchanged
and the proposed matrix compression scheme can be applied. Clearly, the
expressions (20) to (24) for the spatial matrices Qi have to be adapted due
to the application of the H-transform, but can be derived in analogy to the
derivation in Sec. 4.

Similarly, an application of MEDS modifies the odd order equations only
and does not interfere with the decoupling given by (12) and (13). Thus, the
entries in Qoe

i and Qoo
i as in (33) are modified, but the matrix compression

scheme can be applied without additional difficulties.

7. Solution of the Linear System

In the previous sections we have introduced a matrix compression scheme.
However, such a scheme is of use only if the resulting scheme can be solved
without recovering the full matrix again. Such a reconstruction is, in princi-
ple, necessary if direct solvers such as the Gauss algorithm are used, because
the matrix structure is altered in a way that destroys the block structure.
For many popular iterative solvers from the family of Krylov methods, it is
usually sufficient to provide matrix-vector multiplications. Consequently, we
first discuss methods to compute the matrix-vector product Sx for a given
vector x in the case that the system matrix S is given in the compressed
form

S =

p
∑

i=1

Qi ⊗ Ri .
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The number of summands p and the entries of Qi and Ri depend on the
underlying band structure and discretization schemes as discussed in the
previous sections.

It is well known that a row-by-row reconstruction of the compressed ma-
trix S is not efficient. Therefore, we decompose the vector x into N blocks
of size (L+ 1)2 by

x =







x1
...

xN






=

(L+1)2
∑

j=1

ej ⊗ xj , (34)

where ej is the j-th column vector of the identity matrix. The matrix-vector
product can now be written as

Sx =
[

p
∑

i=1

Qi ⊗ Ri

][

(L+1)2
∑

j=1

ej ⊗ xj

]

=

p
∑

i=1

(L+1)2
∑

j=1

(Qiej) ⊗ (Rixj) .

The product Qiej is simply the j-th column of Qi. The computation of
Rixj requires O(CsparseN) additions and multiplications. Building the Kro-
necker products and adding nonzero entries to the resulting vector requires
4N operations for each index pair (i, j). Thus, O((4 + Csparse)pNL

2) ≈
O(CsparsepNL

2) additions and multiplications are needed in total, since in
typical situations Csparse ≫ 4.

For spherical energy bands (p = 9), the matrix-vector multiplication re-
quires slightly less computational effort than the uncompressed case, where
the scalar prefactor is 11. Thus, the proposed matrix compression reduces
both the computational effort and memory requirements. Non-spherical
bands lead to larger values of p as discussed in Sec. 5, thus leading to a
higher computational effort for the matrix-vector multiplications compared
to the uncompressed case. Nevertheless, the additional computational effort
is increased only moderately, while the memory requirements are significantly
reduced.

Due to the coupling structure, recent publications report the elimination
of odd order unknowns in a preprocessing step [25, 26]. Moreover, it has been
shown that for first order expansion the system matrix after elimination of
odd order unknowns is an M-matrix [25]. Moreover, numerical experiments
indicate a considerable improvement in the convergence of iterative solvers.
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For a matrix structure as given by (33), a direct elimination of odd order
unknows would destroy the representation of the system matrix S as a sum
of Kronecker products. Writing the system as

Sg =

(

See Seo

Soe Soo

)

=

(

ge

go

)

=

(

re

ro

)

(35)

with the vector of unknowns g split into ge and ge as unknowns associated
with even and odd order harmonics respectively and analogously for the right
hand side vector r, the elimination of odd order unknowns is carried out using
the Schur complement:

(See − Seo(Soo)−1Soe)ge = re − Seo(Soo)−1ro . (36)

Since Soo is according to Thm. 4 a diagonal matrix, the inverse is directly
available. The other matrix-vector products are carried out as discussed in
the beginning of this section.

In contrast to matrix-vector multiplication with the full system matrix
S, where the proposed matrix compression scheme requires approximately
the same computational effort, a matrix-vector multiplication with the con-
densed matrix (See−Seo(Soo)−1Soe) is more expensive than a matrix-vector
multiplication with a fully set up condensed matrix. To estimate the addi-
tional effort, we assume that the number of even spherical harmonics is equal
to the number of odd spherical harmonics and is given by (L+ 1)2/2, which
is a good approximation for L ≥ 5. Since See is diagonal or at least close
to diagonal, the most computational effort is needed for the computation of
Seo(Soo)−1Soege. Neglecting the cost of inverting the diagonal matrix Soo,
the operation boils down to the computation of two matrix-vector products.
Summing up, a runtime penalty for matrix vector multiplication of a factor
slightly above two is expected.

The total memory needed for the SHE equations is essentially given by
the memory required for the unknowns, which adds another perspective on
the selection of the iterative solver. From (16) we see that the system matrix

S is not symmetric, since Γ
l′,m′

l,m 6= Γ
l,m
l′,m′ . Moreover, numerical experiments

indicate that the matrix S is indefinite, thus many popular solvers cannot be
used. A popular solver for indefinite problems is GMRES [27, 28]. It is typ-
ically restarted after, say, s steps, denoted by GMRES(s). This method was
used in recent publications on SHE simulations [25, 26]. For a system with
N ′ unknowns, the memory required during the solution process is O(sN ′).
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In typical applications, in which the system matrix is uncompressed, this
additional memory is approximately the amount of memory needed for the
storage of the system matrix; thus, it is not a major concern. However,
using the proposed matrix compression scheme, the memory needed for the
unknowns is dominant, so the additional memory for GMRES(s) directly
pushes the overall memory requirements to O(sNL2). The number of steps
s is typically chosen between 20 and 30 as smaller values have been reported
to lead to slower convergence rates. Hence, we conclude that GMRES(s)
might be too expensive for SHE simulations. Instead, iterative solvers with
smaller memory consumption such as BiCGStab [29] should be used.

8. Numerical Results

In the preceding sections we have derived asymptotic memory require-
ments for large expansion orders L and high numbers of spatial degrees of
freedom N with L2 ≪ N . In this section we report the CPU times observed
from our in-house SHE simulator running on a single core of a machine with
a Core 2 Quad 9550 CPU.

All simulations were carried out for a stationary two-dimensional device
on a regular staggered grid with 5×50×50 nodes in (x, H)-space for various
expansion orders. We assumed spherical energy bands and applied the H-
transform and MEDS for stabilization. A fixed potential distribution was
applied to the device to obtain comparable results. For self-consistency with
the Poisson equation using a Newton scheme, similar results can in principle
be obtained by application of the matrix compression scheme to the Jacobian.

First we compared memory requirements for the storage of the system
matrix. We extracted the total number of entries stored in the matrix, mul-
tiplied by three to account for row and column indices and assumed 8 bytes
per entry. In this way, the influence of different sparse matrix storage schemes
is eliminated. The results in Tab. 1 and Fig. 1 clearly demonstrate the asymp-
totic advantage of our approach: Already at an expansion order of L = 5,
memory savings of a factor of 18 are observed. At L = 13, this factor grows
to 145. In particular, the memory requirement for the matrix compression
scheme shows only a weak dependence on L, which is due to the additional
memory needed for the coupling matrices Ri in (25)-(29). The memory re-
quired at L = 1 is essentially determined by the degrees of freedom in the
(x, H)-space. With increasing expansion order L, the additional memory
requirements for the compressed scheme grow quadratically with L (because
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L S
∑

Qi ⊗ Ri Unknowns

1 3.7 MB 4.7 MB 0.2 MB

3 28.4 MB 4.7 MB 1.4 MB

5 83.1 MB 4.7 MB 3.5 MB

7 168 MB 4.8 MB 6.6 MB

9 263 MB 4.8 MB 10.7 MB

11 470 MB 4.8 MB 15.7 MB

13 709 MB 4.9 MB 21.6 MB

Table 1: Memory requirements for the uncompressed and the compressed system matrix
compared to the memory needed for the unknowns for different expansion orders L on a
grid in the three-dimensional (x, H)-space with 5 × 50 × 50 nodes.
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Figure 1: Memory used for the uncom-
pressed and the compressed system matrix
for different expansion orders L on a three-
dimensional (x, H)-grid with 12.500 nodes.
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Figure 2: Memory used for the system ma-
trix in relation to the total amount of mem-
ory used (i.e. system matrix, unknowns and
right hand side).
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Full system Condensed

L S compr. Scond compr.

1 3.9 7.4 0.2 9.2

3 28.4 19.3 4.0 17.9

5 73.9 53.2 15.7 48.9

7 134.8 98.3 36.5 92.2

9 228.1 160.7 68.2 149.8  0.1
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Figure 3: Comparison of execution times (milliseconds) for matrix-vector multiplication
at different expansion orders L for the fully set up system matrix and the proposed com-
pressed matrix scheme. Both the full system of linear equations and the condensed system
with odd order unknowns eliminated in a preprocessing step are compared.

there are (L+ 1)2 spherical harmonics of degree smaller or equal to L), but
even at L = 13 the additional memory compared to L = 1 is less than one
megabyte. Moreover, the memory used for the unknowns dominates even for
moderate values of L, cf. Fig. 2.

In order to quantify the impact of the matrix compression on the run-
time performance of iterative solvers, a comparison of execution times for
the matrix-vector multiplications was carried out, cf. Fig. 3. We compared
execution times for the full system matrix and the condensed system matrix,
where unknowns associated with odd order spherical harmonics had been
eliminated. For the lowest expansion order L = 1, matrix compression does
not pay off, the execution times are by a factor of two larger. This is due
to the additional structural overhead of the compressed scheme at expansion
order L = 1, where no compression effect occurs. However, for larger values
of L, the matrix compression scheme leads to faster matrix-vector multipli-
cations with the full system of linear equations as predicted in Sec. 7. The
predicted asymptotic performance gain of a factor slightly above one can
readily be seen.

Comparing execution times for the condensed system, where odd order
unknowns have been eliminated in a preprocessing step, the runtime penalty
for matrix-vector multiplication is a factor of 15 at L = 1, but in this case
there is no compression effect anyway. At L = 5, the runtime penalty is
only a factor of three and drops to slightly above two at L = 13. Better
caching possibilities and less limitations due to memory bandwidth appear
to be the cause for the smaller relative differences in execution times at higher
expansion orders.

As discussed in Sec. 7, GMRES leads to higher memory requirements than
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L GMRES(50) GMRES(30) GMRES(10) BiCGStab Unknowns

1 10.2 MB 6.2 MB 2.2 MB 1.2 MB 0.2 MB

3 71.4 MB 43.4 MB 15.4 MB 8.4 MB 1.4 MB

5 178.5 MB 108.5 MB 38.5 MB 21.0 MB 3.5 MB

7 336.6 MB 204.7 MB 72.6 MB 39.6 MB 6.6 MB

9 545.7 MB 331.7 MB 117.7 MB 64.2 MB 10.7 MB

11 800.7 MB 486.7 MB 172.7 MB 93.5 MB 15.7 MB

13 1101.6 MB 669.6 MB 237.6 MB 129.6 MB 21.6 MB

Table 2: Additional memory requirements of the linear solvers GMRES(s) with different
values of s and BiCGStab compared to the memory needed for the unknowns.

many other Krylov methods such as BiCGStab. A comparison of additional
memory required by GMRES(50), GMRES(30), GMRES(10) and BiCGStab
is shown in Tab. 2 and Fig. 4. For GMRES(s), our implementation used
s + 1 auxiliary vectors of the same length as the vector of unknowns, while
BiCGStab uses six auxiliary vectors of that size. It can clearly be seen that
the memory required by GMRES(50) is by one order of magnitude larger
than the memory needed for the compressed system (i.e. second and third
column in Tab. 1) and BiCGStab. On the other hand, without system matrix
compression, the additional memory needed by GMRES(50) is comparable
to the memory needed for the system matrix and is thus less of a concern.

9. Conclusions

We have investigated the coupling structure of the SHE equations and
shown the weak coupling of the expansion coefficients. This guarantees that
the total memory requirements for the storage of the system matrix, obtained
from a discretization with N degrees of freedom in (x, ε)-space and SHE
order L, is of order O(NL2) in contrast to O(NL4) that would be required
for a dense coupling. Since L ≥ 9 have been reported to be needed for
sufficiently accurate results, the memory savings are significant compared to
straightforward implementations.

The matrix compression scheme presented in this work further reduces the
memory requirements for the system matrix from order O(NL2) to O(N+L2)
at only slightly increased runtime efficiency of matrix-vector multiplications.
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Figure 4: Additional memory requirements of the linear solvers GMRES(s) with different
values of s and BiCGStab compared to the memory needed for the unknowns.

While the huge memory requirements for the storage of the full system matrix
prohibited the simulation of three-dimensional devices so far, our proposed
scheme paves the way for such simulations even for sufficiently large expan-
sion order L. Assuming a 50 × 50 × 50 × 50 grid in (x, H)-space for the
simulation of a three-dimensional device, approximately 400 MB of memory
is required at lowest expansion order L = 1 for the storage of the unknowns
only. This amount is proportional to (L + 1)2, hence with expansion order
L = 9, roughly 10 GB of memory is needed for the storage of the unknowns
only. Using the proposed matrix compression scheme and BiCGStab as lin-
ear solver, this would result in a total memory footprint of around 60 GB,
which is available already on workstations today. Without matrix compres-
sion scheme, the memory needed for the system matrix would then be ap-
proximately 1 TB, which is certainly out of reach on mainstream computers.
Execution times certainly increase with the number of unknowns, but since
the proposed matrix compression scheme is also attractive for parallelization,
execution times are expected to be reasonably small.

Furthermore, we have shown that the memory requirements of the cho-
sen linear solver affects the total memory needs for SHE simulations using
the proposed matrix compression scheme much more than in many other
circumstances. A comparison between GMRES and BiCGStab shows that a
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careless choice can increase the total memory consumption by up to an order
of magnitude.

Appendix A. The Kronecker Product

For matrices Q = (Qi,j)
n,m
i,j=1 ∈ R

n×m and R ∈ R
p×q, the Kronecker

product is defined as the block matrix

Q ⊗ R =















Q1,1R Q1,2R . . . Q1,m−1R Q1,mR

Q2,1R Q2,2R . . . Q2,m−1R Q2,mR
...

...
. . .

...
...

Qn−1,1R Qn−1,2R . . . Qn−1,m−1R Qn−1,mR

Qn,1R Qn,2R . . . Qn,m−1R Qn,mR















∈ R
np×mq .

The Kronecker product is bilinear and associative, but not commutative.
Moreover, if the matrices Q, R, S and T are such that the products QS

and RT can be formed, there holds

(Q ⊗ R)(S ⊗ T ) = (QS) ⊗ (RT ) .

Appendix B. Sparsity of Coupling Coefficients

To prove the sparsity of v
l′,m′

l,m and Γ
l′,m′

l,m as stated in Thm. 2, it is sufficient

to prove the sparsity for the integrals a
l′,m′

l,m and b
l′,m′

l,m as defined in (12) and

(13). We give a proof for the first components (al′,m′

l,m )1 and (bl′,m′

l,m )1 only, the
proof for the second and third components follows the same arguments and
is thus omitted. We note that the spherical harmonics are given by

Yl,m(θ, ϕ) = Nl,mP
|m|
l (cos θ) ×







cos(mϕ), m > 0 ,
1, m = 0 ,
sin(mϕ), m < 0 ,

where Nl,m denotes a suitable normalization constant and P
|m|
l is an associ-

ated Legendre function. Substitution of the definition of spherical harmonics
and splitting the integral leads to

(al′,m′

l,m )1 = Nl,mNl′,m′

∫ π

0

P
|m|
l (cos θ) sin2 θP

|m′|
l′ (cos θ) dθ

×

∫ 2π

0

cos(ϕ) ×







cos(mϕ), m > 0
1, m = 0
sin(mϕ), m < 0







×







cos(m′ϕ), m′ > 0
1, m′ = 0
sin(m′ϕ), m′ < 0







dϕ .
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The orthogonality of the trigonometric functions cos(mϕ) and cos(m′ϕ) shows

that (al′,m′

l,m )1 vanishes if m′ 6= m ± 1. Thus, it is sufficient to consider the
case m′ = m± 1. We distinguish two cases:

First, let |m′| = |m| − 1. Then we write

(al′,m′

l,m )1 = Al,m,l′,m′

∫ π

0

P
|m|
l (cos θ) sin2 θP

|m|−1
l′ (cos θ) dθ

= Al,m,l′,m′

∫ 1

−1

P
|m|
l (µ)(1 − µ2)1/2P

|m|−1
l′ (µ) dµ,

with a constant Al,m,l′,m′ depending on l, m, l′ and m′. The recurrence
relation

(l +m)Pm
l−1(µ) = (1 − µ2)1/2Pm+1

l (µ) + (l −m)µPm
l (µ) (B.1)

for associated Legendre functions yields

(al′,m′

l,m )1 = Al,m,l′,m′

∫ 1

−1

[

(l + |m| − 1)P
|m|−1
l−1 (µ)

− (l − |m| + 1)µP
|m|−1
l (µ)

]

P
|m|−1
l′ dµ .

Using the recurrence relation

(l −m+ 2)Pm
l+2(µ) = (2l + 3)µPm

l+1(µ) − (l +m+ 1)Pm
l (µ) (B.2)

for the second term, we obtain

(al′,m′

l,m )1 = Al,m,l′,m′

∫ 1

−1

[

(l + |m| − 1)P
|m|−1
l−1 (µ) −

(l − |m| + 1)

2l + 1

×
(

(l − |m| + 2)P
|m|−1
l+1 (µ)

+ (l + |m| − 1)P
|m|−1
l−1 (µ)

)

]

P
|m|−1
l′ dµ

= Al,m,l′,m′

[

(l + |m| − 1)δl−1,l′

−
(l − |m| + 1)

2l + 1

(

(l − |m| + 2)δl+1,l′ + (l + |m| − 1)δl−1,l′

)

]

.
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Therefore, in view of the orthogonality of the associated Legendre functions,
we have (al′,m′

l,m )1 = 0 for l′ 6= l ± 1.
Next, we consider the case |m′| = |m| + 1. Then

(al′,m′

l,m )1 = Bl,m,l′,m′

∫ π

0

P
|m|
l (cos θ) sin2 θP

|m|+1
l′ (cos θ) dθ

= Bl,m,l′,m′

∫ 1

−1

P
|m|
l (µ)(1 − µ2)1/2P

|m|+1
l′ (µ) dµ,

with a constant Bl,m,l′,m′ depending on l, m, l′ and m′. Arguing similarly as

above, we conclude that l′ = l ± 1 is required for nonzero (al′,m′

l,m )1.

For the term (al′,m′

l,m )2 one finds that nonzero values are obtained only if

l′ ∈ {l − 1, l + 1} and m′ ∈ {−m − 1, −m + 1}. The coefficient (al′,m′

l,m )3

vanishes except for l′ ∈ {l − 1, l + 1} and m′ = m.

The sparsity of b
l′,m′

l,m with respect to the indices m and m′ is proved in the

same way as for a
l′,m′

l,m . However, proving sparsity with respect to the indices
l and l′ is more cumbersome because of the derivatives in the integrands.

First, let |m′| = |m| − 1. We have

(bl′,m′

l,m )1 = Cl,m,l′,m′

∫ π

0

[

dP
|m|
l (cos θ)

dθ
cos θ sin θ

+ |m|P
|m|
l (cos θ)

]

P
|m|−1
l′ (cos θ) dθ

= Cl,m,l′,m′

∫ 1

−1

[

−
dP

|m|
l (µ)

dµ
µ(1 − µ2)1/2

+ |m|P
|m|
l (µ)(1 − µ2)−1/2

]

P
|m|−1
l′ (µ) dµ

with some constant Cl,m,l′,m′ . Using the recursion formula

(1 − µ2)
dPm

l (µ)

dµ
= (l +m)Pm

l−1(µ) − lµPm
l (µ)

to resolve the derivative yields

(bl′,m′

l,m )1 = Cl,m,l′,m′

∫ 1

−1

[

lµ2P
|m|
l (µ) − (l + |m|)µP

|m|
l−1(µ)

+ |m|P
|m|
l (µ)

]

P
|m|−1
l′ (µ)(1 − µ2)−1/2 dµ.
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To use the orthogonality of associated Legendre functions, the term (1 −
µ2)−1/2 has to be eliminated and the upper index of associated Legendre
functions has to be equal. To this end, we employ the relation

µPm
l (µ) = (l −m+ 1)(1 − µ2)1/2Pm−1

l (µ) + Pm
l−1(µ)

to obtain

(bl′,m′

l,m )1 = Cl,m,l′,m′

∫ 1

−1

[

l(l − |m| + 1)µP
|m|−1
l (µ)(1 − µ2)1/2

− |m|µP
|m|
l−1(µ) + |m|P

|m|
l (µ)

]

P
|m|−1
l′ (µ)(1 − µ2)−1/2 dµ .

Applying the recursion (B.2) to the first term and

Pm
l+1(µ) = µPm

l (µ) + (l +m)(1 − µ2)1/2Pm−1
l (µ)

to the remaining terms, we find that

(bl′,m′

l,m )1 = Cl,m,l′,m′

∫ 1

−1

[

l(l − |m| + 1)2

2l + 1
P

|m|−1
l+1 (µ)

+
l(l − |m| + 1)(l + |m|)

2l + 1
P

|m|−1
l−1 (µ)

+ |m|(l + |m| − 1)P
|m|−1
l−1 (µ)

]

P
|m|−1
l′ (µ) dµ

= Cl,m,l′,m′

[

l(l − |m| + 1)2

2l + 1
δl+1,l′

+
l(l − |m| + 1)(l + |m|) + (2l + 1)|m|(l + |m| − 1)

2l + 1
δl−1,l′

]

.

Thus, l = l′ ± 1 is required for nonvanishing (bl′,m′

l,m )1.
Next, let |m′| = |m| + 1. Starting from

(bl′,m′

l,m )1 = Dl,m,l′,m′

∫ π

0

[

dP
|m|
l (cos θ)

dθ
cos θ sin θ

− |m|P
|m|
l (cos θ)

]

P
|m|+1
l′ (cos θ) dθ

= Dl,m,l′,m′

∫ 1

−1

[

−
dP

|m|
l (µ)

dµ
µ(1 − µ2)1/2

− |m|P
|m|
l (µ)(1 − µ2)−1/2

]

P
|m|+1
l′ (µ) dµ
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for some constant Dl,m,l′,m′ , we arrive similarly as above at

(bl′,m′

l,m )1 = Dl,m,l′,m′

∫ 1

−1

[

lµ2P
|m|
l (µ) − (l + |m|)µP

|m|
l−1(µ)

− |m|P
|m|
l (µ)

]

P
|m|+1
l′ (µ)(1 − µ2)−1/2 dµ .

With the recurrence relation

(l +m+ 1)µPm
l (µ) = (l −m+ 1)Pm

l+1(µ) + (1 − µ2)1/2Pm+1
l (µ)

applied to the first and the second term we find that

(bl′,m′

l,m )1 = Dl,m,l′,m′

∫ 1

−1

[

l

l + |m| + 1
(1 − µ2)1/2µP

|m|+1
l (µ)

− (1 − µ2)1/2P
|m|+1
l−1 (µ) + l

l − |m| + 1

l + |m| + 1
µP

|m|
l+1(µ)

− lP
|m|
l (µ)

]

P
|m|+1
l′ (µ)(1 − µ2)−1/2 dµ .

The recurrence relations (B.2) applied to the first term and (B.1) applied to
the last two terms yields

(bl′,m′

l,m )1 = Dl,m,l′,m′

∫ 1

−1

[

l

l + |m| + 1

l − |m| + 1

2l + 1
P

|m|+1
l+1 (µ)

+
l

l + |m| + 1

l + |m|

2l + 1
P

|m|+1
l−1 (µ) − P

|m|+1
l−1 (µ)

+
l

l + |m| + 1
P

|m|+1
l+1 (µ)

]

P
|m|+1
l′ (µ) dµ

= Dl,m,l′,m′

[

l

l + |m| + 1

(

l − |m| + 1

2l + 1
+ 1

)

δl+1,l′

+

(

l

l + |m| + 1

l + |m|

2l + 1
− 1

)

δl−1,l′

]

.

Summarizing, l′ ∈ {l − 1, l + 1} and m′ ∈ {m + 1, m − 1} is required

for nonzero (bl′,m′

l,m )1. The coefficient (bl′,m′

l,m )2 requires l′ ∈ {l − 1, l + 1} and

m′ ∈ {−m+ 1,−m− 1} in order to have nonzero values, while (bl′,m′

l,m )3 6= 0

requires l′ ∈ {l−1, l+1} and m′ = m. Hence, the sparsity structure of b
l′,m′

l,m

is the same as that of a
l′,m′

l,m .
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Appendix C. Wigner 3jm Symbols

The symbol

(

j1 j2 j3
m1 m2 m3

)

(C.1)

with parameters being either integers or half-integers is called a Wigner 3jm

symbol arising in coupled angular momenta in two quantum systems. It is
zero unless all of the following selection rules apply:

1. m1 ∈ {−|j1|, . . . |j1|}, m2 ∈ {−|j2|, . . . |j2|} and m3 ∈ {−|j3|, . . . |j3|} ,

2. m1 +m2 +m3 = 0 ,

3. |j1 − j2| ≤ j3 ≤ j1 + j2 .

The connection with spherical harmonics is the following:

∫

Ω

Yl1,m1
Yl2,m2

Yl3,m3
dΩ =

√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

×

(

l1 l2 l3
0 0 0

) (

l1 l2 l3
m1 m2 m3

)

,

where the left hand side is often termed Slater integral.
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höfer, Stable Discretization of the Boltzmann Equation based on Spher-
ical Harmonics, Box Integration, and a Maximum Entropy Dissipation
Principle, J. Appl. Phys. 100 (2) (2006) 024502.

[27] Y. Saad, M. H. Schultz, GMRES: A Generalized Minimal Residual Al-
gorithm for Solving Nonsymmetric Linear Systems, SIAM J. Sci. Stat.
Comput. 7 (3) (1986) 856–869.

[28] H. F. Walker, L. Zhou, A Simpler GMRES, Numer. Linear Algebra
Appl. 1 (6) (1994) 571–581.

[29] H. A. van der Vorst, Bi-CGSTAB: A Fast and Smoothly Converging
Variant of Bi-CG for the Solution of Non-Symmetric Linear Systems,
SIAM Journal on Scientific and Statistical Computing 12 (1992) 631–
644.

32


	titelseite10-10.pdf
	p10rupp

